Сумма приведенных вычетов по модулю n. Полная и приведённая системы вычетов

Определение. Числа образуют полную систему вычетов по модулю , если любое целое число сравнимо по модулю с одним и только одним из этих чисел.

Любая полная система вычетов по модулю состоит из чисел, которые попарно не сравнимы по модулю .

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число, взаимно простое с . Тогда - тоже полная система вычетов по модулю .

Доказательство. Нужно доказать, что эти числа попарно не сравнимы по модулю . Предположим противное. Пусть

Так как НОД , то , что противоречит условию.

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число. Тогда - тоже полная система вычетов по модулю .

Лемма. Если , то НОД НОД .

Доказательство.

– целое число.

Отсюда . Любой общий делитель и является делителем . Отсюда НОД НОД .

Определение. Числа образуют приведенную систему вычетов по модулю , если они взаимно просты с и любое целое число, взаимно простое с , сравнимо с одним и только одним из этих чисел по модулю .

Пример. Приведенная система вычетов по модулю 10: 1,3,7,9.

Лемма. Все приведенные системы вычетов по модулю состоят из одного и того же количества чисел, которое обозначается - функция Эйлера.

Доказательство. Действительно, пусть есть две приведенные системы вычетов по модулю , состоящие из разного количества чисел:

Тогда так как числа образуют приведенную систему вычетов по модулю , то каждое из чисел сравнимо с одним и только одним из этих чисел. Поскольку , то, по принципу Дирихле, по крайней мере два числа из будут сравнимы с каким-то числом , а значит, будут сравнимы между собой по модулю . А это противоречит тому, что - приведенная система вычетов по модулю . Значит, .

Докажем теперь, что . В самом деле, числа, меньшие и взаимно простые с , образуют приведенную систему вычетов по модулю . Это следует из леммы.

Определение. Функция Эйлера (или тотиент) обозначает количество чисел, меньших и взаимно простых с .



Теорема. Если - приведенная система вычетов по модулю и - число, взаимно простое с , то - тоже приведенная система вычетов по модулю .

Если - простое, то .

Лемма. Если - простое, то .

Доказательство. Действительно, чисел, меньших простого и имеющих с ним общий делитель, всего .

Лемма. Пусть НОД . Тогда . Функция Эйлера мультипликативна.

Доказательство. Запишем все числа от 1 до следующим образом:

Числа в каждой строке образуют полную систему вычетов по модулю . Значит, взаимно простых с среди них . При этом эти числа расположены по столбцам - друг под другом, поскольку в каждом столбце стоят числа, сравнимые по модулю .

Числа в каждом столбце образуют полную систему вычетов по модулю . Действительно, -й столбец получается, если взять числа , образующие полную систему вычетов по модулю , умножить их на число , взаимно простое с , и прибавить к каждому из них .

Таким образом, в каждом столбце ровно чисел, взаимно простых с .

Так как число будет взаимно простым с тогда и только тогда, когда оно взаимно просто с и взаимно просто с , то количество чисел, взаимно простых с , равно .

Теорема. Пусть

Каноническое разложение числа . Тогда

Доказательство. По лемме о мультипликативности функции Эйлера

Пример.

Теорема (Эйлера). Если и - взаимно простые числа, то

Пусть - какая-нибудь приведенная система вычетов по модулю . . Тогда - тоже приведенная система вычетов по модулю . Следовательно, каждое из чисел первой последовательности сравнимо с одним из чисел второй последовательности по модулю , а каждое из чисел второй последовательности сравнимо с одним из чисел первой последовательности. Тогда

Так как каждое из чисел взаимно просто с , то на них сравнение можно сократить:

Следствие. Пусть – целые числа, – натуральные. Если , , НОД , то .

Доказательство. Пусть . Так как , то – натуральное число. Тогда

Значит, .

88вопрос
Гомотетия и подобие пространства

Гомотетию с центром O и коэффициентом k обозначают H k 0

Свойства преобразований гомотетии и подобия пространства аналогичны свойствам гомотетии и подобия плоскости, поэтому изучение первых следует начинать с повторения вторых. Подобие пространства с коэффициентом k можно разложить в композицию движения и гомотетии с некоторым центром и тем же коэффициентом.

Учащиеся должны знать, что при подобном преобразовании пространства сохраняется величина угла (плоского и двугранного), параллельные (перпендикулярные) прямые и плоскости отображаются на параллельные (перпендикулярные) прямые и плоскости. Это означает, что при подобном преобразовании пространства образом любой фигуры является фигура, имеющая такую же форму, что и данная фигура, но отличающаяся от нее лишь «своими размерами».

Задача 12. Дан правильный тетраэдр РАВС ; точки Р 1 , А 1 , В 1 , С 1 - центры его граней (рис.14). Докажите, что тетраэдр Р 1 А 1 В 1 С 1 подобен тетраэдру РАВС ; найдите коэффициент этого подобия.

Решение . Пусть точки Н и K - середины ребер соответственно АВ и ВС тетраэдра РАВС , точка А 1 - центр грани РВС , точка Р 1 - центр грани АВС (рис. 14). Это означает, что

РА 1: А 1 K = АР 1: Р 1 K = 2: 1,

А 1 K : РK = Р 1 K : АK = 1: 3,

Аналогично можно доказать, что
А 1 В 1 : АВ = 1: 3 и А 1 В 1 АВ ,
А 1 С 1 : АС = 1: 3 и А 1 С 1 АС ,
В 1 С 1 : ВС = 1: 3 и В 1 С 1 ВС ,
В 1 Р 1 : ВР = 1: 3 и В 1 Р 1 ВР ,
С 1 Р 1 : СР = 1: 3 и С 1 Р 1 СР .
Из этих соотношений между ребрами тетраэдров РАВС и Р 1 А 1 В 1 С 1 следует, что тетраэдр Р 1 А 1 В 1 С 1 - правильный, поэтому эти тетраэдры подобны; коэффициент подобия равен 1/3. (В профильных классах стоит доказать, что эти тетраэдры гомотетичны.)
Можно ввести определение: «Фигура F 1 называется подобной фигуре F , если существует преобразование подобия пространства, отображающее фигуру F на фигуру F 1 ». Тогда для доказательства подобия фигуры F 1 фигуре F достаточно найти хотя бы одно преобразование подобия, которое фигуру F отображает на фигуру F 1 ..

Определение. Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т.е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X" и Y", что XX" = YY"

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т.е. X"Y" = XY

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A" переходит данная точка A, то этот перенос задан вектором AA", и это означает, что все точки смещаются на один и тот же вектор, т.е. XX" = AA" для всех точек Х

Центральная симметрия

Определение

Точки A и A" называются симметричными относительно точки О, если точки A, A", O лежат на одной прямой и OX = OX". Точка О считается симметричной сама себе (относительно О)

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной

Определение

Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О

Основное свойство: Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X" и Y", что X"Y" = -XY

Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X" и Y". Тогда, как ясно из определения центральной симметрии, OX" = -OX, OY" = -OY

Вместе с тем XY = OY - OX, X"Y" = OY" - OX"

Поэтому имеем: X"Y" = -OY + OX = -XY

Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия

Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка А отображается на А", то центр симметрии это середина отрезка AA"

Поворот вокруг прямой

Для более четкого представления о повороте вокруг прямой следует вспомнить поворот на плоскости около данной точки. Поворотом на плоскости около данной точки называется такое движение, при котором каждый луч, исходящий из данной точки, поворачивается на один и тот же угол в одном и том же направлении. Перейдем теперь к повороту в пространстве

Определение. Поворотом фигуры вокруг прямой a на угол (называется такое отображение, при котором в каждой плоскости, перпендикулярной прямой a, происходит поворот вокруг точки ее пересечения с прямой a на один и тот же угол (в одном и том же направлении. Прямая a называется осью поворота, а угол - углом поворота)

Отсюда видим, что поворот всегда задается осью, углом и направлением поворота

Теорема 1. Поворот вокруг прямой сохраняет расстояния, т.е. является движением

Теорема 2. Если движение пространства имеет множеством своих неподвижных точек прямую, то оно является поворотом вокруг этой прямой

Преобразования плоскости

Классы вычетов. Системы вычетов

Краткие сведения из теории

Применяя теорему о делении с остатком можно множество целых чисел разбить на ряд классов. Рассмотрим пример. Пусть m = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:

r = 1;

r = 2;

r = 3;

r = 4;

r = 5;

где через r обозначен остаток от деления целого числа на 6.

Напомним теорему о делении с остатком:

Теорема : Разделить число на число , , с остатком, значит, найти пару целых чисел q и r , таких, что выполняются следующие условия: .

Легко доказывается, что для любых целых чисел а и деление с остатком возможно и числа q и r определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество {0, 1, 2, 3, 4, 5}; полная система наименьших положительных вычетов – множество {0, 1, 2, 3, 4, 5}; полная система наименьших по абсолютной величине вычетов – множество {-2,-1, 0, 1, 2, 3}; приведённая система вычетов – множество {1,5}, так как ; фактор-множество

Один из методов выполнения арифметических операций над данными целыми числами основан на простых положениях теории чисел. Идея этого метода состоит в том, что целые числа представляются в одной из непозиционных систем – в системе остаточных классов. А именно: вместо операций над целыми числами оперируют с остатками от деления этих чисел на заранее выбранные простые числа – модули .

Чаще всего числа выбирают из множества простых чисел.

Пусть …, .

Так как в кольце целых чисел имеет место теорема о делении с остатком, т. е. где , то кольцо Z , по определению, является евклидовым.

Таким образом, в качестве чисел можно выбрать остатки от деления числа А на р i соответственно.

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n попарно несравнимых по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

Делении целых чисел a и m получается частное q и остаток r , такие что

a = m q + r, 0 r m-1. Остаток r называют ВЫЧЕТ ом по модулю m .

Например, для m = 3 и для m =5 получим:

a = m q + r, m = 3 a = m q + r, m = 5
0 = 3 + 0 0 = 5 + 0
1 = 3 + 1 1 = 5 + 1
2 = 3 + 2 2 = 5 + 2
3 = 3 + 0 3 = 5 + 3
4 = 3 + 1 4 = 5 + 4
5 = 3 + 2 5 = 5 + 0
6 = 3 + 0 6 = 5 + 1
7 = 3 + 1 7 = 5 + 2

Если остаток равен нулю (r =0 ), то говорят, что m делит a нацело (или m кратно a ), что обозначают m a , а числа q и m называют делителями a . Очевидно 1 a и a a . Если a не имеет других делителей, кроме 1 и а , то а – простое число, иначе а называют составным числом. Самый большой положительный делитель d двух чисел a и m называют наибольшим общим делителем (НОД) и обозначают d = (a,m). Если НОД (a,m)= 1 , то a и m не имеют общих делителей, кроме 1 , и называются взаимно простыми относительно друг друга.



Каждому ВЫЧЕТ у r = 0, 1, 2,…, m-1 соответствует множество целых чисел a, b, … Говорят, что числа с одинаковым ВЫЧЕТ ом сравнимы по модулю и обозначают a b(mod m) или (a b) m .

Например, при m = 3 :

Например, при m = 5 :



Числа а , которые сравнимы по модулю m , образуют класс своего ВЫЧЕТа r и определяются как a = m q + r.

Числа а тоже называют ВЫЧЕТами по модулю m . НеотрицательныеВЫЧЕТы а = r (при q=0 ), принимающие значения из интервала , образуют полную систему наименьших вычетов по модулю m.

ВЫЧЕТы а , принимающие значения из интервала [-( ,…,( ] , при нечетном m или из интервала [- при четном m образуют полную систему абсолютно наименьших ВЫЧЕТ ов по модулю m.

Например, при m = 5 классы наименьших вычетов образуют

r = 0, 1, 2, 3, 4, a = -2, -1, 0, 1, 2. Обе приведенные совокупности чисел образуют полные системы вычет ов по модулю 5 .

Класс ВЫЧЕТов , элементы которого взаимно просты с модулем m

называют приведенным. Функция Эйлера определяет сколько ВЫЧЕТов из полной системы наименьших вычетов по модулю m взаимно просты с m . При простом m=p имеем = p-1.

Определение . Максимальный набор попарно несравнимых по модулю m чисел, взаимно простых с m , называется приведённой системой вычетов по модулю m . Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера.

Определение. Любое число из класса эквивалентности є m будем называть вычет ом по модулю m . Совокупность вычет ов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычет ов по модулю m (в полной системе вычет ов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычет ами и, конечно, образуют полную систему вычет ов по модулю m . Вычет r называется абсолютно наименьшим, если ïrï наименьший среди модулей вычет ов данного класса.

Пример . Проверить, образуют ли числа 13, 8, - 3, 10, 35, 60 полную систему вычетов по модулю m=6.

Решение : По определению числа образуют полную систему вычетов по модулю m , если их ровно m и они попарно несравнимы по модулюm .

Попарную несравнимость можно проверить, заменив каждое число наименьшим неотрицательным вычетом; если повторений не будет, то это полная система вычетов.

Применим теорему о делении с остатком: a = m q + r.

13 = 6 2 + 1 13 1(mod 6); 8 = 6 1 + 2 8 2(mod 6);

3 = 6 (-1) + 3 -3 3(mod 6); 10 = 6 1 + 4 10 4(mod 6);

35 = 6 5 + 5 35 5(mod 6); 60 = 6 10 + 0 60 0(mod 6).

Получили последовательность чисел: 1, 2, 3, 4, 5, 0, их ровно 6, повторений нет и они попарно несравнимы. То есть, они образуют полную систему вычетов по модулю m = 6.

Пример . Заменить наименьшим по абсолютной величине, а также наименьшим положительным вычетом 185 по модулю 16.

Решение. Применим теорему о делении с остатком:

185 = 16 11 + 9 185 9(mod 16).

Пример. Проверить, образуют ли числа (13, -13, 29, -9) приведенную систему вычетов по модулю m=10.

Решение: Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера. В нашем случае =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость: =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость:m .

Вариант 1. a = 185, m = 12; Вариант 2. a = 84, m = 9;

Вариант 3. a = 180, m = 10; Вариант 4. a = 82, m = 9;

Вариант 5. a = 85, m = 11; Вариант 6. a = 84, m = 8;

Вариант 7. a = 103, m = 87; Вариант 8. a = 84, m = 16;

Вариант 9. a = 15, m = 10; Вариант 10. a = 81, m = 9;

Вариант 11. a = 85, m = 15; Вариант 12. a = 74, m = 13;

Вариант 13. a = 185, m = 16; Вариант 14. a = 14, m = 9;

Вариант 15. a = 100, m = 11; Вариант 16. a = 484, m = 15;

Вариант 17. a = 153, m = 61; Вариант 18. a = 217, m = 19;

Вариант 19. a = 625, m = 25; Вариант 20. a = 624, m = 25;

Задание 3. Записать полную и приведенную систему наименьших

Согласно свойству сравнений №15, числа одного и того же класса по модулю m имеют с модулем m один и тот же НОД. Особенно важны классы, для которых он равен 1.

Взяв от каждого из таких классов по одному числу, получим приведенную систему вычетов по модулю m . Обычно ее выделяют из системы наименьших неотрицательных вычетов по модулю m .

Приведенная система наименьших неотрицательных вычетов по модулю m обозначается U m .

Количество чисел в приведенной системе вычетов по модулю m , очевидно, равно φ(m ).

Пример :

Приведенная система вычетов по модулю 15 есть {1; 2; 4; 7; 8; 11; 13; 14}. Заметим, что φ(15)=(5–1)∙(3–1)= 8 и действительно, в приведенной системе вычетов по модулю 15 ровно 8 элементов.

Утверждение 1

Любые φ(m ) чисел, попарно несравнимых по модулю m и взаимно простых с m , образуют приведенную систему вычетов.

(Доказательство очевидно как в утверждении 1 пункт 2)

Утверждение 2

Если (a , m ) = 1, x пробегает приведенную систему вычетов по модулю m , то ax тоже пробегает приведенную систему вычетов по модулю m . (Доказательство очевидно как в утверждении 2 пункт 2).

Обратный элемент.

Говорят, что элемент b называется обратным к a по модулю m , если a∙b ≡1(mod m ), и пишут b a –1 (mod m ).

Вообще, классическая теория чисел не нуждается в таком понятии как обратный элемент, в чем можно убедиться, ознакомившись, например, с . Однако криптология использует системы вычетов как в теоретико-числовом, так и в алгебраическом аспекте, а потому, для удобства изложения алгебраических основ криптологии, мы вводим понятие обратного элемента.

Возникает вопрос – для всех ли элементов по данному модулю m существует обратный (по умножению), и если для каких-то элементов обратный существует, как его найти?

Для ответа на этот вопрос воспользуемся расширенным алгоритмом Евклида. Рассмотрим сначала взаимно простые число a и модуль m . Тогда, очевидно, (a ,m )=1. Расширенный алгоритм Евклида позволяет получить числа x и y , такие, что ax+my= (a ,m ), или, что то же самое, ax+my =1. Из последнего выражения получаем сравнение ax+my ≡1(mod m ). Поскольку my ≡0(mod m ), то ax ≡1(mod m ), а значит полученное с помощью расширенного алгоритма Евклида число x как раз и есть искомый обратный элемент к числу a по модулю m .



Пример.

a =5, m =7. Требуется найти a -1 mod m .

Воспользуемся расширенным алгоритмом Евклида.

Обратный ход:

1=5–2∙2=5–(7–5∙1)∙2=5∙3–7∙2.

x =3, y =–2.

5 -1 ≡3(mod 7)

Проверка: 5∙3=15. 15≡1(mod 7).

Действительно, 3 является обратным элементом к 5 по модулю 7.

Итак, конструктивным образом убедились в том, что для чисел, взаимно простых с модулем, существует обратный по этому модулю. А существуют ли обратные элементы для чисел, не являющихся с модулем взаимно простыми?

Пусть (a ,m )=d ≠1. Тогда a и m представимы в виде a =d a 1 , m =d m 1 . Допустим, что для a существует обратный элемент по модулю m, то есть b : a b ≡1(modm ). Тогда a b= m k +1. Или, что то же самое, d a 1 ∙b= d m 1 ∙k +1. Но тогда по теореме 2 из §1 п.1, в силу того, что и левая часть данного уравнения, и первое слагаемое в правой части делятся на d , то d \1, а это не так, поскольку d ≠1. Пришли к противоречию, следовательно предположение о существовании обратного элемента неверно.

Итак, мы только что доказали

Теорему обратимости

a -1 (mod m ) (a , m ) = 1.

Суммируя все рассуждения этого пункта, можем сказать, что обратимыми являются только взаимно простые с модулем числа, и найти обратные для них можно с помощью расширенного алгоритма Евклида.

дипломная работа

2.5.2 Вычеты. Полная и приведенная системы вычетов

Числа равноостаточные, или, что то же самое, сравнимые по модулю m, образуют класс чисел по модулю m.

Из такого определения следует, что всем числам класса отвечает один и тот же остаток r, и мы получим все числа класса, если в форме mq + r заставим q пробегать все целые числа.

Соответственно m различным значениям r имеем m классов чисел по модулю m.

Любое число класса называется вычетом по модулю m по отношению ко всем числам того же класса. Вычет, получаемый при q = 0, равный самому остатку r, называется наименьшим неотрицательным вычетом.

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m. Чаще всего в качестве полной системы вычетов употребляют наименьшие неотрицательные вычеты 0, 1, ..., m-1 или также абсолютно наименьшие вычеты. Последние, как это следует из вышеизложенного, в случае нечетного m представляются рядом

1, 0, 1, ...,

а в случае чётного m каким-либо из двух рядов

1, 0, 1, ...,

1, 0, 1, ..., .

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Действительно, будучи несравнимы, эти числа тем самым принадлежат к различным классам, а так как их m, т.е. столько же, сколько и классов, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает полную систему вычетов по модулю m, то ax + b, где b - любое целое, тоже пробегает полную систему вычетов по модулю m.

Действительно, чисел ax +b будет столько же, сколько и чисел x, т.е. m. Согласно предыдущему утверждению остаётся, следовательно, только показать, что любые два числа ax 1 + b и ax 2 + b, отвечающие несравнимым x 1 и x 2 , будут сами несравнимы по модулю m.

Но допустив, что ax 1 + b ax 2 + b (mod m), мы придём к сравнению ax 1 = ax 2 (mod m), откуда, вследствие (a, m) = 1, получим

x 1 x 2 (mod m),

что противоречит предположению о несравнимости чисел x 1 и x 2 .

Числа одного и того же класса по модулю m имеют с модулем один и тот же общий наибольший делитель. Особенно важны классы, для которых этот делитель равен единице, т.е. классы, содержащие числа, взаимно простые с модулем.

Взяв от каждого такого класса по одному вычету, получим приведённую систему вычетов по модулю m. Приведённую систему вычетов, следовательно, можно составить из чисел полной системы, взаимно простых с модулем. Обыкновенно приведённую систему вычетов выделяют из системы наименьших неотрицательных вычетов: 0, 1, ..., m-1. Так как среди этих чисел число взаимно простых с m есть (m), то число чисел приведённой системы, равно как и число классов, содержащих числа, взаимно простые с модулем, есть (m).

Пример. Приведённая система вычетов по модулю 42 будет 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Любые (m) чисел, попарно несравнимые по модулю m и взаимно простые с модулем, образуют приведённую систему вычетов по модулю m.

Действительно, будучи несравнимыми и взаимно простыми с модулем, эти числа тем самым принадлежат к различным классам, содержащим числа, взаимно простые с модулем, а так как их (m), т.е. столько же, сколько и классов указанного вида, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает приведённую систему вычетов по модулю m, то ax тоже пробегает приведённую систему вычетов по модулю m.

Действительно, чисел ax будет столько же, сколько и чисел x, т.е. (m). Согласно предыдущему свойству остаётся, следовательно, только показать, что числа ax по модулю m несравнимы и взаимно просты с модулем. Первое следует из свойства сравнений (если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m) для чисел более общего вида ax + b, второе же следует из (a, m) = 1, (x, m) = 1.

Алгебраическая проблема собственных значений для матриц специального вида и ее программное обеспечение

При постановке проблемы собственных значений для матриц, элементы которых заданы приближенно, естественно возникает вопрос об устойчивости полученного решения, иными словами, вопрос о том...

База данных MS Access

Программное обеспечение для работы с базами данных используется на персональных компьютерах уже довольно давно. К сожалению, эти программы либо были элементарными диспетчерами хранения данных и не имели средств разработки приложений...

Дефрагментатор файловой системы

Метод полной дефрагментации или дефрагментации свободного места использовался одним из первых. Данный способ дефрагментирует все файлы и помещает их в начала раздела, что позволяет освободить максимально возможную свободную область диска...

Компьютерное моделирование устройств робототехники

В данной курсовой работе необходимо изучить моделирование устройств робототехники следующими методами: 1. С использованием системы MathCAD -- исследовать поведение одного звена робота...

Методы и средства защиты компьютерной информации

Зашифрование по алгоритму Rijndael реализуется в виде следующего псевдокода. Аргументы обрабатываются как указатели на поля байтов или четырехбайтовых слов. Интерпретация полей, переменных и функций дана в таблицах 11-13...

Описание реализации базовой модели электрической цепи

В данной курсовой работе необходимо выполнить: 1. С использованием системы MathCAD рассчитать значения функции заряда на конденсаторе в заданной электрической схеме. Построить графики функции емкости конденсатора и функции заряда. 2...

Приложения Windows: графический редактор Paint

Двойным щелчком на ячейке палитры можно выбрать для неё цвет из полной палитры цветов...

Применение систем компьютерного моделирования для исследования математической модели RLC-цепи

Применение системы Mathcad и Matlab для исследования математической модели электрической, включающей в себя источник ЭДС, сопротивления R, емкость С и катушку индуктивности L. Полная постановка задачи: 1. С использванием системы Mathcad 1...

Применение системы MathCAD для исследования модели электрической цепи с переменной индуктивностью

Применение системы MathCAD для исследования модели электрической цепи с переменной индуктивностью, заданной графически. Постановка задачи: 1...

Применение системы MathCAD для исследования реакции электрической цепи на внешнее воздействие

Применение системы Mathcad для исследования реакции электрической цепи на внешнее воздействие Постановка задачи 1. С использованием системы Mathcad рассчитать значения функции реакции u(t) на воздействие e(t). Построить графики функций u(t) и e(t). 2...

Программа для решения системы обыкновенных дифференциальных уравнений

Разработка алгоритма и Паскаль-программы по вычислению заданной функции

Запишем полную Паскаль-программу в соответствии с разработанным алгоритмом, который приведён в Приложении A. Program n_33; var m, n, j: integer; b, an, mult, h: real; x: array of real; y: array of real; c: array of real; gd,gm,n,m,i,j:integer; s,b,srk,min,max,y1:real; Begin clrscr; writeln (vvedite kol-vo chlenov c,x); readln (n...

Синтез алгоритмов согласованного управления пространственным движением беспилотным летательным аппаратом

Известно, что одним из основных моментов в составлении или разработке математической модели ЛА является принятие различных допущений, упрощающих, схематизирующих реальный процесс. Принятие допущений это инженерная задача, от правильности...

Управление проектом внедрения автоматизированной информационной системы для ООО "Рим"

АСУП как система состоит из большого количества элементов различных уровней и различного назначения. К ним относятся подсистемы, модули, блоки управления, задачи, управленческие процедуры, функции, операции и т. п. Базовые системы типа ERP...

m - набор, составленный из всех чисел полной системы вычетов по модулю m , взаимно простых с m . Приведённая система вычетов по модулю m состоит из φ(m ) чисел, где φ(m ) - функция Эйлера . В качестве приведённой системы вычетов по модулю m обычно берутся взаимно простые с m числа от 0 до m - 1 .

Wikimedia Foundation . 2010 .

  • Drag-and-drop
  • 2С25 «Спрут-СД»

Смотреть что такое "Приведённая система вычетов" в других словарях:

    Приведённая система вычетов - часть полной системы вычетов (См. Полная система вычетов), состоящая из чисел взаимно простых с модулем m. П. с. в. содержит φ(m) чисел [φ(m) число чисел, взаимно простых с m и меньших m]. Всякие φ(m) чисел, не сравнимые по модулю m и… … Большая советская энциклопедия

    Приведенная система вычетов - Приведённая система вычетов по модулю m набор, составленный из всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(m) функция Эйлера. В качестве приведённой… … Википедия

    Мультипликативная группа кольца вычетов - Приведённая система вычетов по модулю m множество всех чисел полной системы вычетов по модулю m, взаимно простых с m. Приведённая система вычетов по модулю m состоит из φ(m) чисел, где φ(·) функция Эйлера. В качестве приведённой системы вычетов… … Википедия

    Функция Эйлера - Не следует путать с функцией распределения простых чисел. Первая тысяча значений Функция Эйлера φ(n) мультипликативная … Википедия

    Сравнение по модулю - Сравнение по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… … Википедия

    Конечная группа - Симметрия снежинки связана с группой поворотов на угол, кратный 60° Конечная группа алгебраическая группа, содержащая конечное число элементов (это число называется её порядком). Далее группа предполагается мультипликативной, то есть операция в… … Википедия

    Четверная группа Клейна - Четверная группа Клейна группа четвёртого порядка, играет важную роль в высшей алгебре. Содержание 1 Определение 2 Обозначение 3 … Википедия