Сообщение на тему силы упругости. Закон Гука — определение и формула

Коэффициент E в этой формуле называется модулем Юнга . Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E ≈ 2·10 11 Н/м 2 , а для резины E ≈ 2·10 6 Н/м 2 , то есть на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2. Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела .

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3. Деформация растяжения пружины.

В отличие от пружин и некоторых эластичных материалов (например, резины) деформация растяжения или сжатия упругих стержней (или проволок) подчиняется линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.


§ 10. Сила упругости. Закон Гука

Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил.
Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими , а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими .
Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба , кручения и сдвига .

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.



Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.

Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х>0: В этой точке пружина действует на тело М упругой силой

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х<0. В этой точке пружина действует на тело М упругой силой

Из рисунка видно, что проекция силы упругости пружины на ось Ах всегда имеет знак, противоположный знаку координаты х, так как сила упругости направлена всегда к положению равновесия С. На рис. 20, б изображен график закона Гука. На оси абсцисс откладывают значения удлинения х пружины, а на оси ординат - значения силы упругости. Зависимость fх от х линейная, поэтому график представляет собой прямую, проходящую через начало координат.

Рассмотрим еще один опыт.
Пусть один конец тонкой стальной проволоки закреплен на кронштейне, а к другому концу подвешен груз, вес которого является внешней растягивающей силой F, действующей на проволоку перпендикулярно ее поперечному сечению (рис. 21).

Действие этой силы на проволоку зависит не только от модуля силы F, но и от площади поперечного сечения проволоки S.

Под действием приложенной к ней внешней силы проволока деформируется, растягивается. При не слишком большом растяжении эта деформация является упругой. В упруго деформированной проволоке возникает сила упругости f уп.
Согласно третьему закону Ньютона, сила упругости равна по модулю и противоположна по направлению внешней силе, действующей на тело, т. е.

f уп = -F (2.10)

Состояние упруго деформированного тела характеризуют величиной s, называемой нормальным механическим напряжением (или, для краткости, просто нормальным напряжением ). Нормальное напряжение s равно отношению модуля силы упругости к площади поперечного сечения тела:

s=f уп /S (2.11)

Пусть первоначальная длина нерастянутой проволоки составляла L 0 . После приложения силы F проволока растянулась и ее длина стала равной L. Величину DL=L-L 0 называют абсолютным удлинением проволоки . Величину

называют относительным удлинением тела . Для деформации растяжения e>0, для деформации сжатия e<0.

Наблюдения показывают, что при небольших деформациях нормальное напряжение s пропорционально относительному удлинению e:

Формула (2.13) является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным. Коэффициент пропорциональности Е в законе Гука называется модулем продольной упругости (модулем Юнга).

Установим физический смысл модуля Юнга. Как видно из формулы (2.12), e=1 и L=2L 0 при DL=L 0 . Из формулы (2.13) следует, что в этом случае s=Е. Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза. (если бы для такой большой деформации выполнялся закон Гука). Из формулы (2.13) видно также, что в СИ модуль Юнга выражают в паскалях (1 Па = 1 Н/м 2).

Диаграмма растяжения

Используя формулу (2.13), по экспериментальным значениям относительного удлинения e можно вычислить соответствующие им значения нормального напряжения s, возникающего в деформированном теле, и построить график зависимости s от e. Этот график называют диаграммой растяжения . Подобный график для металлического образца изображен на рис. 22. На участке 0-1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения s п, при котором еще выполняется закон Гука, называют пределом пропорциональности .

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1-2), хотя упругие свойства тела еще сохраняются. Максимальное значение s у нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости . (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2-3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3-4 графика). Это явление называют текучестью материала. Нормальное напряжение s т, при котором остаточная деформация достигает заданного значения, называют пределом текучести .

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4-5 графика). Максимальное значение нормального напряжения s пр, при превышении которого происходит разрыв образца, называют пределом прочности .

Энергия упруго деформированного тела

Подставив в формулу (2.13) значения s и e из формул (2.11) и (2.12), получим

f уп /S=E|DL|/L 0 .

откуда следует, что сила упругости f уп, возникающая при деформации тела, определяется по формуле

f уп =ES|DL|/L 0 . (2.14)

Определим работу A деф, совершаемую при деформации тела, и потенциальную энергию W упруго деформированного тела. Согласно закону сохранения энергии,

W=A деф. (2.15)

Как видно из формулы (2.14), модуль силы упругости может изменяться. Он возрастает пропорционально деформации тела. Поэтому для подсчета работы деформации необходимо брать среднее значение силы упругости , равное половине от ее максимального значения:

= ES|DL|/2L 0 . (2.16)

Тогда определяемая по формуле A деф =|DL| работа деформации

A деф = ES|DL| 2 /2L 0 .

Подставив это выражение в формулу (2.15), найдем значение потенциальной энергии упруго деформированного тела:

W= ES|DL| 2 /2L 0 . (2.17)

Для упруго деформированной пружины ES/L 0 =k - жесткость пружины; х - удлинение пружины. Поэтому формула (2.17) может быть записана в виде

W=kx 2 /2. (2.18)

Формула (2.18) определяет потенциальную энергию упруго деформированной пружины.

Вопросы для самоконтроля:

 Что такое деформация?

 Какую деформацию называют упругой? пластической?

 Назовите виды деформаций.

 Что такое сила упругости? Как она направлена? Какова природа этой силы?

 Как формулируется и записывается закон Гука для одностороннего растяжения (сжатия)?

 Что такое жесткость? Какова единица жесткости в СИ?

 Начертите схему и объясните опыт, иллюстрирующий закон Гука. Постройте график этого закона.

 Сделав пояснительный рисунок, опишите процесс растяжения металлической проволоки под нагрузкой.

 Что называют нормальным механическим напряжением? Какая формула выражает смысл этого понятия?

 Что называют абсолютным удлинением? относительным удлинением? Какие формулы выражают смыйл этих понятий?

 Какой вид имеет закон Гука в записи, содержащей нормальное механическое напряжение?

 Что называют модулем Юнга? Каков его физический смысл? Какова единица модуля Юнга в СИ?

 Начертите и объясните диаграмму растяжения металлического образца.

 Что называют пределом пропорциональности? упругости? текучести? прочности?

 Получите формулы, по которым определяют работу деформации и потенциальную энергию упруго деформированного тела.

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, - тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.

Мы с вами знаем, что если на тело действует какая-то сила, то тело будет двигаться под воздействием этой силы. Например, снежинка падает на землю, потому что ее притягивает Земля. И притяжение Земли действует постоянно, но снежинка, достигнув крыши, не продолжает падать, а останавливается, сохраняя наш дом сухим.

С точки зрения чистоты и порядка в доме все правильно и логично, но с точки зрения физики всему должно быть объяснение. И если снежинка перестает вдруг двигаться, значит, должна была появиться сила, которая противодействует ее движению. Эта сила действует в сторону, противоположную притяжению Земли, и равна ей по величине. В физике эта сила, противодействующая силе тяжести, называется силой упругости и изучается в курсе седьмого класса. Разберемся, что же это такое.

Что такое сила упругости?

Для примера, поясняющего, что такое сила упругости, вспомним или представим простую бельевую веревку, на которую мы вешаем мокрое белье. Когда мы вешаем какую-либо мокрую вещь, веревка, до этого натянутая горизонтально, прогибается под весом белья и слегка растягивается. Наша вещица, например, мокрое полотенце, сначала движется к земле вместе с веревкой, потом останавливается. И так происходит при добавлении на веревку каждой новой вещи. То есть, очевидно, что с увеличением силы воздействия на веревку она деформируется вплоть до того момента, пока силы противодействия этой деформации не станут равны весу всех вещей. И тогда движение вниз прекращается. Говоря по-простому, работа силы упругости заключается в том, чтобы сохранять целостность предметов, на которые мы воздействуем другими предметами. И если сила упругости не справляется, то тело деформируется безвозвратно. Веревка рвется, крыша под слишком большим весом снега проваливается и так далее. Когда возникает сила упругости? В момент начала воздействия на тело. Когда мы вешаем белье. И исчезает, когда мы белье снимаем. То есть, когда воздействие прекращается. Точкой приложения силы упругости является та точка, в которой происходит воздействие. Если мы пытаемся сломать палку об колено, то точкой приложения силы упругости будет точка, в которой мы давим на палку коленом. Это вполне понятно.

Как найти силу упругости: закон Гука

Чтобы узнать, как найти силу упругости, мы должны познакомиться с законом Гука. Английский физик Роберт Гук впервые установил зависимость величины силы упругости от деформации тела. Эта зависимость прямо пропорциональная. Чем больше возникает деформация, тем больше сила упругости. То есть формула для силы упругости выглядит следующим образом:

F_упр=k*∆l,

где ∆l - величина деформации,
а k - коэффициент жесткости.

Коэффициент жесткости, естественно, различен для разных тел и веществ. Для его нахождения существуют специальные таблицы. Сила упругости измеряется в Н/м (ньютонах на метр).

Сила упругости в природе

Сила упругости в природе - это стайка воробьев на ветке дерева, грозди ягод на кустах или шапки снега на еловых лапках. Прогибающиеся, но несдающиеся ветви при этом героически и совершенно бесплатно демонстрируют нам силу упругости.

Мы с вами знаем, что если на тело действует какая-то сила, то тело будет двигаться под воздействием этой силы. Например, листочек падает на землю, потому что его притягивает Земля. Но если листочек упал на лавочку, он не продолжает падать, и не проваливается сквозь лавочку, а находится в покое.

И если листочек перестает вдруг двигаться, значит, должна была появиться сила, которая противодействует его движению. Эта сила действует в сторону, противоположную притяжению Земли, и равна ей по величине. В физике эта сила, противодействующая силе тяжести, называется силой упругости.

Что такое сила упругости?

Щенок Антошка очень любит наблюдать за птичками.

Для примера, поясняющего, что такое сила упругости, вспомним и мы птичек и веревку. Когда птичка садится на веревку,то опора, до этого натянутая горизонтально, прогибается под весом птички и слегка растягивается. Птичка сначала движется к земле вместе с веревкой, потом останавливается. И так происходит при добавлении на веревку еще одной птички. А потом еще одной. То есть, очевидно, что с увеличением силы воздействия на веревку она деформируется вплоть до того момента, пока силы противодействия этой деформации не станут равны весу всех птичек. И тогда движение вниз прекращается.

При растяжении подвеса сила упругости будет равна силе тяжести, то растяжение прекращается.

Говоря по-простому, работа силы упругости заключается в том, чтобы сохранять целостность предметов, на которые мы воздействуем другими предметами. И если сила упругости не справляется, то тело деформируется безвозвратно. Веревка рвется под обилием снега, ручки у пакета рвутся,если его перегрузить продуктами, при больших урожаев ломаются ветви яблони и так далее.

Когда возникает сила упругости? В момент начала воздействия на тело. Когда птичка села на веревку. И исчезает, когда птичка взлетает. То есть, когда воздействие прекращается. Точкой приложения силы упругости является та точка, в которой происходит воздействие.

Деформация

Сила упругости возникает только при деформации тел. Если исчезает деформация тела, то исчезает и сила упругости.

Деформации бывают разных видов: растяжения, сжатия, сдвига, изгиба и кручения.

Растяжение – мы взвешиваем на пружинных весах тело, или обычные резинка, которая растягивается под весом тела

Сжатие - мы положили на пружину тяжелый предмет

Сдвиг - работа ножниц или пилы, расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Изгиб - наши птички сели на ветку, турник с учениками на уроке физкультуре

Природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

Закон Гука

В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид:

,

где - жёсткость тела, - величина деформации.

В словесной формулировке закон Гука звучит следующим образом:

Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.

Нелинейные деформации

При увеличении величины деформации закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения или сжатия.


Wikimedia Foundation . 2010 .

Смотреть что такое "Сила упругости" в других словарях:

    сила упругости - энергия упругости — Тематики нефтегазовая промышленность Синонимы энергия упругости EN elastic energy … Справочник технического переводчика

    сила упругости - tamprumo jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vidinės kūno jėgos, veikiančios prieš jį deformuojančias išorines jėgas ir iš dalies ar visiškai atkuriančios deformuotojo kūno (skysčių, dujų) tūrį ir (kietojo kūno) formą … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    сила упругости - tamprumo jėga statusas T sritis fizika atitikmenys: angl. elastic force vok. elastische Kraft, f rus. сила упругости, f; упругая сила, f pranc. force élastique, f … Fizikos terminų žodynas

    СИЛА - векторная величина мера механического воздействия на тело со стороны др. тел, а также интенсивности др. физ. процессов и полей. Силы бывают различными: (1) С. Ампёра сила, с которой (см.) действует на проводник с током; направление вектора силы… … Большая политехническая энциклопедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия

    Сущ., ж., употр. наиб. часто Морфология: (нет) чего? силы, чему? силе, (вижу) что? силу, чем? силой, о чём? о силе; мн. что? силы, (нет) чего? сил, чему? силам, (вижу) что? силы, чем? силами, о чём? о силах 1. Силой называют способность живых… … Толковый словарь Дмитриева

    Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия

    Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле,… … Физическая энциклопедия

    Раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия

Книги

  • Комплект таблиц. Физика. 7 класс (20 таблиц) , . Учебный альбом из 20 листов. Физические величины. Измерения физических величин. Строение вещества. Молекулы. Диффузия. Взаимное притяжение и отталкивание молекул. Три состояния вещества.…
  • Комплект таблиц. Физика. Динамика и кинематика материальной точки (12 таблиц) , . Учебный альбом из 12 листов. Законы Ньютона. Закон всемирного тяготения. Сила тяжести. Сила упругости. Вес тела. Сила трения. Закон движения. Перемещение. Скорость. Равномерное прямолинейное…