Платино никелевый катализатор применение. Никелевые катализаторы

Катализатор Ренея

Никель Ренея

Никель Ренея , иначе «скелетный никель» - твёрдый микрокристаллический пористый никелевый катализатор , используемый во многих химико-технологических процессах; способ его приготовления предложил в американский инженер Мюррей Реней. Представляет собой серый высокодисперсный порошок (размер частиц обычно 400 - 800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Частицы порошка имеют большое количество пор, вследствие чего удельная поверхность составляет около 100 м 2 /г. Никель Ренея пирофорен, т.е. самовоспламеняется на воздухе при комнатной температуре, поэтому его хранят под слоем воды, спирта либо бензина.

Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов , алкенов , растительных масел и т.п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Структурная и тепловая стабильность никеля Ренея позволяет использовать его в широком диапазоне условий проведения реакции; в лабораторной практике возможно его многократное использование. Никель Ренея каталитически значительно менее активен, чем металлы платиновой группы , но значительно дешевле последних.

Источники

  • Некрасов Б.В. Основы общей химии. - М.: Химия, 1973. Т. II. С. 340.
  • Реми Г. Курс неорганической химии. - М.: Мир, 1974. Т. II. С. 703.

Wikimedia Foundation . 2010 .

Смотреть что такое "Катализатор Ренея" в других словарях:

    Катализатор - (Catalyst) Определение катализатора, механизм действия катализатора Определение катализатора, механизм действия катализатора, применение катализатора Содержание Содержание 1. в химии Виды катализаторов Механизм действия катализаторов Требования,… … Энциклопедия инвестора

    Никель Ренея, иначе «скелетный никель» твёрдый микрокристаллический пористый никелевый катализатор, используемый во многих химико технологических процессах; способ его приготовления пр … Википедия

    Никель Ренея Никель Ренея, иначе «скелетный никель» твёрдый микрокристаллический пористый никелевый катализатор, используемый во многих химико технологических процессах; способ его приготовления предложил в 1926 американский инженер Мюррей Реней … Википедия

    Ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами,… … Энциклопедия Кольера

    Отличительная особенность спиртов гидроксильная группа при насыщенном атоме углерода на рисунке выделена красным (кислород) и серым цветом (водород). Спирты (от лат. … Википедия

Никель обычно используется в виде так называемого "никеля Ренея". Никель Ренея, иначе «скелетный никель» -- твёрдый микрокристаллический пористый никелевый катализатор, используемый во многих химико-технологических процессах. Его структурная и тепловая стабильность позволяет использовать этот катализатор в широком диапазоне условий проведения реакции; в лабораторной практике возможно многократное использование. Никель Ренея каталитически значительно менее активен, чем металлы платиновой группы, но значительно дешевле последних.

В промышленности для производства никелевых катализаторов гидрирования в основном применяют осаждение компонентов из водных растворов и суспензий и пропитку сформированного и специально приготовленного носителя водными растворами активных металлов. Активность гидрирующих катализаторов, полученных методом пропитки носителя, обычно выше активности катализаторов, приготовленных методом соосаждения.

В целом, способ приготовления никелевых катализаторов включает стадии пропитки, высушивания, дегидратации, активации (прокаливания), восстановления и пассивации. Для приготовления осажденных и пропиточных никелевых катализаторов используются следующие процессы:

1) Пропитка носителя (А1 2 О 3 , SiO 2 , уголь, цеолиты) раствором соли, например нитрата никеля. После этого катализатор сушат и прокаливают при высокой температуре (400-500°C) на воздухе.

Смешение осадка активного гидроксида Ni(OH) 2 с гидрогелем носителя. Смешение продолжается 20-30 ч, после чего проводят экструзию, сушку и прокаливание.

  • 2) Нанесение одного осадка на другой. Например, гидроксид никеля осаждают аммиаком из раствора нитрата никеля в присутствии суспензии гидратированного оксида алюминия. Осадок фильтруют, тщательно промывают, сушат и прокаливают при 500°C в течение двух часов на воздухе.
  • 3) Соосаждение. Например, кипящий раствор силиката натрия медленно добавляют к раствору нитрата никеля. Осадок фильтруют и промывают. Можно также аммиачный раствор добавлять к смешанному раствору нитратов никеля и алюминия при 70°C. После этого осадок фильтруют, промывают, сушат и прокаливают.
  • 4) Гидротермальная обработка смешанных осадков. Смешанную пасту Ni(OH) 2 и SiO 2 нагревают с водяным паром в автоклаве в течение 25 часов при температуре 250°C и давлении 50 атм., осадок фильтруют, промывают, сушат и прокаливают.
  • 5) Супергомогенное соосаждение. Смешивают три солевых раствора, например Ni(NO 3) 2 , NaNO 3 и Na 2 Si2O 5 , в результате чего образуется пересыщенный раствор. При быстром перемешивании выделяется однородный осадок, который отделяют, промывают, сушат и прокаливают.

Пропиточные Ni-катализаторы менее активны, чем катализаторы, полученные ионным обменом, поскольку дисперсность никеля в первом случае меньше. Перед проведением реакции катализаторы восстанавливают водородом (иногда реакционной смесью) при 400-500°C. Легче всего подвергаются восстановлению катализаторы, полученные методом пропитки, труднее -- методом соосаждения и гидротермальной обработки. И в промышленности наиболее предпочтительным способом получения катализаторов гидрирования на носителях остается пропитка из водных растворов. При реализации этого метода учитываются последние достижения в области формирования активной фазы катализаторов. Например, установлено, что соблюдение условий, способствующих удержанию металла в носителе в ионной форме (Ni/Al 2 0 3 , Ni/Si0 2), благоприятствует получению активного и стабильного Ni-катализатора гидрирования. В частности, применяют двухстадийное нанесение никеля: на первой стадии в результате ионного обмена в носитель внедряются трудновосстанавливаемые ионы Ni 2+ , а на второй происходит физическая сорбция соли, легко подвергающейся восстановлению. По-видимому, ион Ni 2+ является центром кристаллизации и стабилизации кристаллитов Ni. Нагревание системы Ni/Ti0 2 часто приводит к уменьшению активной поверхности никеля вследствие обволакивания кристаллитов металла оксидом. В этом проявляется эффект сильного взаимодействия металл-носитель. Этот эффект усиливается в присутствии водорода, при этом изменяются активность и селективность катализаторов.

Более перспективным является способ получения низкопроцентных Ni-катализаторов гидрирования путем нанесения смешанных неорганических комплексных солей из водных растворов. Во всех случаях в качестве модификатора или активной фазы используют гетерополисоли с анионами, в состав которых входит Ni или Со, В = Mo, W, V. При их разложении образуются Со --Mo-, Ni -- W- и Ni -- Mo-катализаторы на носителях, однако гетерополисоли могут также служить модификаторами Ni-содержащих катализаторов. Для приготовления гидрирующих катализаторов этого типа с целью моделирования известных Со --Mo-, Со --W- и Ni -- W-катализаторов гидроочистки был осуществлен синтез гетерополисолей никеля. При их разложении на поверхности образовывалась активная фаза. Прежде соли и кислоты такого типа применяли преимущественно в качестве катализаторов окисления, гидратации-дегидратации и других процессов.

Приготовленные методом пропитки носителя гетерополисолями Ni --Mo- и Ni -- W-катализаторы на носителе были испытаны в реакциях гидрирования. Они оказались менее активными, чем промышленные Ni --Mo- и Ni --W-катализаторы. Это объясняется пониженным содержанием в них Ni, которое невозможно увеличить, поскольку в данном случае гетерополисоли используются как обычная активная фаза.

В 1980-х года были разработаны никелевые катализаторы принципиально нового типа на разных носителях (активированный уголь, А1 2 0 3 , Si0 2), в которых гетерополисоли разного состава играют роль модификаторов. Их испытания в широком круге реакций (гидрирование олефинов, ароматических соединений, альдегидов, кетонов, нафтенов, СО, гидрогенизация углей, гидродеметилирование толуола, гидрокрекинг бензиновых фракций, дегидрирование циклоалканов) показали, что они обладают высокой и регулируемой активностью и селективностью. Особенностью этих катализаторов является низкое содержание металла (2 -6% Ni) и солей-модификаторов на поверхности носителя и в то же время развитая поверхность металлического никеля и его высокая дисперсность. Катализаторы обладают повышенной термостабильностью, а способ их приготовления весьма технологичен. Гидрирование на модифицированных гетерополисоли-Ni-катализаторах, содержащих 2-4% Ni, протекает значительно легче, чем на промышленном Ni --Сr-катализаторе с содержанием никеля - 50%.

Скелетные катализаторы используют в процессах гидрирова­ния Сахаров, жиров, фурфурола, многоядерных хинонов и т. д. Кроме того, они являются составной частью электродов низко­температурных топливных элементов, предназначенных для пре­образования химической энергии в электрическую . Материалами для получения скелетных контактов служат двух - или многокомпонентные сплавы каталитически активных метал­лов с такими веществами, которые можно частично или полностью удалить при обработке растворами сильных электролитов, от­гонке в вакууме или других операциях, основанных на различии их физико-химических свойств. По мере удаления из сплава рас­творимых компонентов происходит перегруппировка атомов оста­ющегося металла в свойственную ему кристаллическую решетку. Так, при выщелачивании АІ из Ni-Аі-сплава атомы никеля пере­страиваются в кубическую гранецентрированную решетку. После удаления из сплава растворимого (например, в щелочи) компо­нента получается почти чистый активный металл в виде мельчай­шего порошка . К каталитически активным относятся пере­ходные металлы; к неактивным - сера, фосфор, алюминий, крем­ний, магний, цинк и ряд других веществ.

Наиболее распространены катализаторы из сплавов никеля с алюминием. Они отличаются высокой активностью, простотой приготовления, хорошей теплопроводностью и высокой механи­ческой прочностью. Эти катализаторы пирофорны, поэтому их

Хранят, транспортируют и работают с ними под слоем жидкости (вода, спирт, метилциклогексан и другие).

В промышленности используют два типа скелетных никелевых катализаторов - катализатор Бага и никель Ренея (пат. США 1563787, 1628191, 1915473). Оба получают из сплава Ni с А1, однако, если никель Ренея представляет собой мелкодисперсный порошок, состоящий из чистого никеля, то ка­тализатор Бага - кусочки никель-алюминиевого сплава (65- 75 % Ni и 35-25 % А1).

Исходные сплавы получают чаще всего пирометаллургическими способами - сплавлением компонентов или алюмотермией. В пос­леднее время используют методы порошковой металлургии - спекание предварительно спрессованных смесей никелевых и алюминиевых порошков в восстановительной или инертной атмо­сфере при 660-700 °С. Реакции между двумя твердыми телами с образованием новой твердой фазы включают процесс диффузии, поскольку реагирующие вещества разделяются образующимся продуктом реакции . Реагирующие вещества сохраняют по­стоянную активность с обеих сторон реакционной поверхности раздела фаз, в связи с чем скорость переноса материала опреде­ляется скоростью нарастания толщины диффузионного слоя про­дукта и выражается формулой

Здесь б-толщина диффузионного слоя продукта; т - время; D - коэф­фициент диффузии; В - постоянная.

Из различных типов печей, пригодных для получения сплава, лучшими являются высокочастотные печи с автоматическим пере­мешиванием компонентов, позволяющие получать катализатор высокого качества.

Для получения активных катализаторов большое значение имеют способ приготовления и состав сплава. При изготовлении никелевого катализатора наиболее приемлемы сплавы, содержа­щие от 40 до 60 % (масс.) активного металла. Повышение содер­жания никеля более 60 % затрудняет разложение сплава щелочью.

Начальные стадии для катализатора Бага и никеля Ренея одинаковы; расплавляют АІ примерно при 660 °С, повышают температуру до 900 - 1200 °С и выдерживают расплав при этой температуре некоторое время, необходимое для удале­ния из металла газов и солей. Далее в расплав вносят никель, при этом температура поднимается до 1900 °С за счет теплоты образования сплава. В процессе сплавления металлов наблюдается смещение их внешних электронных уровней, с чем связывают про - мотирующий эффект вводимой добавки (А1). Особое внимание должно быть обращено на правильный выбор условий охлаждения сплава. При медленном остывании образуется мелкокристалличе­ская структура, что способствует получению (после удаления А1) каталитически активного металла в высокодисперсном состоя­нии. Быстрое же охлаждение благоприятствует образованию крупнокристаллической структуры сплава.

Полученный сплав состоит из Ni3AI, NiAI, Ni2AI3, NiAl3. Считают, что наиболее активные катализаторы дают соединения NiAI 3 и Ni2Al3. Формирование катализатора из Ni2Al3 идет через так называемую скелетную стадию. Часть скелета распадается с образованием мелких частиц никеля. Катализатор же из NiAI3 формируется по растворно-осадительному механизму. В этом слу­чае вместо бидисперсного конгломерата из Ni и недоразрушенного Ni2Al3 получается широкий набор частиц различных диаметров.

Охлажденный катализатор подвергают дроблению. При рав­ных соотношениях Ni и AI сплав хрупок и легко измельчается. С повышением содержания Ni он становится более прочным и дробится с трудом. Для катализатора Бага сплав дробят на куски размером 3-5 мм, для никеля Ренея - до мелкой крошки.

Никель Ренея в промышленных условиях получают в откры­тых аппаратах, снабженных мешалкой и паровой рубашкой . В аппарат заливают 20-30 % раствор NaOH в количестве, превышающем теоретически требуемое для растворения алюми­ния, постепенно вносят измельченный сплав, включают мешалку и ведут процесс выщелачивания при 120 °С, поддерживая постоян­ным объем реагентов. Повышение температуры выщелачивания до 160 °С приводит к увеличению степени дисперсности никеля Ренея. С ростом температуры выщелачивания удельная площадь поверхности катализаторов из NiAl3 монотонно понижается, а из Ni2Al3, наоборот, увеличивается, достигая максимального значения при 100 °С . О количестве выщелоченного алюми­ния судят по объему выделившегося водорода: 2А1 + 2NaOH + 2НаО = 2NaA102 + ЗН2.

Пересчет на сухой газ при нормальных условиях проводят по формуле:

T>0 = 273 (P-PHjO)/. (3.51)

Здесь Gcn - количество сплава, взятое на выщелачивание.

Активность скелетных катализаторов связана с наличием в них водорода в физически адсорбированном и растворенном состояниях . Содержание водорода зависит от температуры выщелачивания:

Температура выщелачивания, °С... . 50 80 100

Объем Н2, см3 на 1 г катализатора. . . 470 160-170 140

Активность, селективность и устойчивость катализаторов за­висят от состояния адсорбированного ими водорода. Важную роль при этом играет выбор метода сушки легкоокисляющихся катали­заторов, в частности скелетного никеля. Рекомендуется тщатель­ная отмывка катализаторов от воды метанолом или другими спиртами алифатического ряда. Наилучшей является сушка ка­тализаторов от воды при низких давлениях и температурах.

После прекращения выщелачивания большую часть раствора сливают, осадок отмывают от щелочи и в виде водной суспензии переводят в специальную емкость. В последнюю добавляют ми­неральное масло, и полностью удаляют воду нагреванием в ва­кууме. Готовый катализатор хранят и транспортируют в виде масляной суспензии. Регенерацию никеля Ренея не производят, срок службы этого катализатора невелик; он быстро отравляется сернистыми, кислородными и азотистыми соединениями. Ка­тализатор Бага можно регенерировать дополнительным выщела­чиванием А1. На скелетных никелевых контактах процессы идут примерно при 100-120 °С и давлении от 2 до 8 МПа в жидкой фазе. Широкие возможности для оптимизации характеристик катализатора Бага, никеля Ренея дает расширение ассортимента неблагородных компонентов исходных сплавов.

аммиака до окиси азота NО в одном из главных процессов производства азотной кислоты. Катализатор здесь предстает в виде сетки из платиновой проволоки диамет ром 0,05-0,09 мм. В материал сеток введена добавка родия (5-10%). Используют и тройной сплав - 93% Pt, 3% Rh и 4% Pd. Добавка родия к платине повышает механическую прочность и увеличивает срок службы сетки, а немного удешевляет катализатор и немного (на 1-2%) повышает его активность. Срок службы платиновых сеток - год-полтора. После этого старые сетки отправляют на аффинажный завод на регенерацию и устанавливают новые. Производство азотной кислоты потребляет значительные количества платины.

Платиновый катализатор ускоряет многие другие практически важные реакции: гидрирование жиров, циклических и ароматических углеводородов, олефинов, альдегидов, ацетилена, кетонов, окисление SО 2 в SО 3 в сернокислотном производстве. Их используют также при синтезе витаминов и некоторых фармацевтических препаратов. Известно, что в 1974 г. на нужды химической промышленности в США было израсходовано около 7 ,5 т платины.

Не менее важны платиновые катализаторы в нефтеперерабатывающей промышленности. С их помощью на установках каталитического риформинга получают высокооктановый бензин, ароматические углеводороды и технический из бензиновых и лигроиновых фракций нефти. Здесь платину обычно используют в виде мелкодисперсного порошка, нанесенного на окись алюминия, керамику, глину, уголь. В этой отрасли работают и другие катализаторы ( , ), но у платиновых - неоспоримые преимущества: большая активность и долговечность, высокая эффективность. Нефтеперерабатывающая промышленность США закупила в 1974 г. около 4 т платины.

Еще одним крупным потребителем катализатора стала автомобильная промышленность, которая, как это ни странно, тоже использует именно каталитические свойства этого металла - для дожигания и обезвреживания выхлопных газов.

Четвертым и пятым по масштабам потребления покупателями платины в США были электротехника и стекольное производство.

Стабильность электрических, термоэлектрических и механических свойств платины плюс высочайшая коррозионная и термическая стойкость сделали этот металл незаменимым для современной электротехники, автоматики и телемеханики, радиотехники, точного приборостроения. Из платины делают электроды топливных элементов. Такие элементы применены, например, на космических кораблях серии «Аполлон».

Из сплава платины с 5-10% родия делают фильеры для производства стеклянного волокна. В платиновых тиглях плавят оптическое , когда особенно важно ничуть не нарушить рецептуру.

В химическом машиностроении и ее служат превосходным коррозионностойким материалом. Аппаратура для получения многих особо чистых веществ и различных фторсодержащих соединений изнутри покрыта платиной, а иногда и целиком сделана из нее.

Очень незначительная часть платины идет в медицинскую промышленность.Из платины и ее сплавов изготавливают хирургические инструменты, которые, не окисляясь, стерилизуются в пламени спиртовой горелки; это преимущество особенно ценно при работе в полевых условиях. платины с палладием, серебром, медью, цинком, никелем служат также отличным материалом для зубных протезов.

Спрос науки и техники на платину непрерывно растет и далеко не всегда бывает удовлетворенным. Дальнейшее изучение свойств платины еще больше расширит области применения и возможности этого ценнейшего металла.

«СЕРЕБРИШКО»? Современное название элемента № 78 происходит от испанского слова plata - . Название «платина» мож но перевести как «серебришко» или «сребрецо».

ЭТАЛОН КИЛОГРАММА, Из сплава платины с иридием в нашей стране наготовлен эталон килограмма, представляющий собой пря мой цилиндр диаметром 39 мм и высотой тоже 39 мм. Он хранится в Санкт-Петербурге (Ленинграде), во Всесоюзном научно-исследовательском инсти туте метрологии им. Д. И. Менделеева. Раньше был эталоном и платино-иридиевый метр.

ПЛАТИНЫ. Сырая -это смесь различных минералов платины. Минерал поликсен содержит 80-88% Pt и

9-10% Fe; купроплатина - 65-73% Pt, 12-17% Fe и 7,7-14% Сu; в никелистую платину вместе с элементом № 78 входят , и . Известны также природные платины толь ко с палладием или только с иридием - прочих платиноидов следы. Есть еще и немногочисленные - соединения платины с серой, мышьяком, сурьмой. К ним относятся PtAs 2 PtS, брэггит (Pt, Pd, Ni)S.

САМЫЕ КРУПНЫЕ. Самые крупные самородки платины, демонстрируемые на выставке Алмазного фонда Россия , весят 5918 ,4 и 7860,5 г.

ПЛАТИНОВАЯ ЧЕРНЬ. Платиновая чернь - мелкодисперсный порошок (размеры крупинок 25-40 мкм) металлической платины, обладающий высокой каталитической активностью. Ее получают, действуя формальдегидом или другими восстановителями на раствор комплексной гексахлорплатиновой кислоты Н 2 [РtСl 6 ].

ИЗ «СЛОВАРЯ ХИМИЧЕСКОГО», ИЗДАННОГО В 1812 ГОДУ. «Профессор Снядецкий в Вильне открыл в платине новое металлическое существо, которое названо им Вестий»…

«Фуркруа читал в Институте сочинение, в коем извещает, что содержит , и металлическое существо, доселе еще неизвестное»…

«Золото хорошо соединяется с платиною, но когда количество сей последней превышает 1 к 47 , белеет , не умножая чувствительно тяжести своей и тягучести. Испанское правительство, опасавшееся сего состава, запретило выпуск платины, потому что не знало средств доказать подлога»-.

ОСОБЕННОСТИ ПЛАТИНОВОЙ ПОСУДЫ. Казалось бы, посуда из платины в лаборатории пригодна на все случаи жизни, но это не так. Как пи благороден этот тяжелый драгоценный металл, обра щаясь с ним, следует помнить, что при высокой температуре пла тина становится чувствительной к многим веществам и воздей ствиям. Нельзя, например, нагревать платиновые тигли в восстановительном и тем более коптящем пламени: раскаленная платина растворяет и от этого становится ломкой. В платиновой посуде не плавят : возможно образование относительно легкоплавких сплавов и потери драгоценной платины. Нельзя так же плавить в платиновой посуде перекиси металлов, едкие щелочи, сульфиты и тиосульфаты:


Катализаторы, содержащие никель, находят широкое применение, в частности в таких реакциях как гидрирование, алкилирование, гидроалкилирование, в процессах крекинга и др. Эти катализаторы обладают высокой активностью, которая в процессе работы падает. Через какое-то время активность катализатора снижается до такой степени, что его дальнейшее использование в промышленном процессе становится нецелесообразным.
В литературе описано большое количество никелевых катализаторов и их модификаций. Эти катализаторы применяются в реакциях гидрирования, в частности при гидрировании ненасыщенных органических соединений. Катализаторы, применяемые в процессах гидроалкилирования, помимо никеля обычно содержат другие металлы, например вольфрам. В никелевых катализаторах, применяемых при крекинге, часто содержатся молибден и другие элементы.
Никель является дорогостоящим металлом, а отходы, содержащие его, представляют опасность для окружающей среды. Ввиду этого большое внимание уделяется разработке методов регенерации отработанных катализаторов и (или) выделения никеля из отработанных катализаторов и других никельсодержащих отходов.
Cm. также «Кобальт из отработанных катализаторов», в частности патент США 145397.
Cm. также «Триарилбораны из отработанных катализаторов {I].
Процесс, разработанный Ю. Хираяма (патент США 4 029495, 14 июня 1977 г.), предусматривает нагревание катализатора на носителе, загрязненного органическими соединениями, или смеси такого катализатора с флюсом во вращающейся или качающейся печи или в градиентной печи. В результате нагревания и перемешивания сырье спекается или переходит в полурасплавленное состояние. После этого смесь отверждают, охлаждают и распыляют. Тяжелые металлы выделяют путем гравитационного обогащения или магнитного разделения. В другом варианте спекшуюся или полурасплавленную смесь можно подвергнуть плавлению при высокой температуре с последующим разделением компонентов на основе различия в их плотностях.
Схема процесса представлена на рис. 124. Ниже приводится конкретный пример осуществления процесса. 100 частей отработанного катализатора, содержащего 50 % масел и (или) жиров, 35 % кизельгура и 15 % никеля, смешивают с 5 частями щелочи (пластинки). Из смеси формуют гранулы диаметром 30 и высотой 50 мм. Гранулы помещают в предварительно нагретую вращающуюся печь и плавят в восстановительной атмосфере при 1000-1300 0C. Смесь выгружают из печи, охлаждают и измельчают. Шлак превращают в мелкий порошок и выделяют порошкообразный никель с помощью магнитного сепаратора; степень выделения никеля 95 %. Полученный никель имеет следующий состав, % : С 0,3; P 0,024; S 0,502; SiO2 (свободная) 8; Al2O3 0,5 %; Ni 97.
Процесс, разработанный В. Д. Атчисоном, А. Энглишем и Д. Хальтером (патент США 4 120698, 17 октября 1978 г.; фирма «Зе Ханна Майнинг Компании), включает окисление смеси отработанного катализатора и никелевой руды при повышенных температурах; плавление окисленной смеси; восстановление полученного расплава и выделение никеля.
Этот экономичный метод предназначен для увеличения содержания никеля и (или) получения ферроникеля из никельсодержащих руд с использованием отходов, содержащих никель, таких как отработанные никелевые катализаторы. Процесс позволяет выделять никель из отработанных катализаторов, используя энтальпию органических примесей, присутствующих в сырье.
Схема процесса представлена на рис. 125. Никелевую руду и отработанный катализатор подают в смеситель А по линиям / и 5 соответственно. Руда обычно по-

I - флюс; 2 - катализатор; 3 - смеситель; 4 - мялка; 5 - шнековый питатель; 6 - печь; 7 - обработка отходящих газов; 8 - измельчение; 9 - пылесборник; 10 - шаровая мельница; 11 - магнитный сепаратор грубого разделения; 12 - шлак; 13 - магнитный сепаратор четкого разделения; 14 - тяжелые металлы для производства сплавов; 15 - тяжелый металл высокой чистоты Рис. 125. Схема процесса извлечения никеля из катализаторов с одновременным производством ферроникеля
материале содержатся горючие примеси; при этом происходит спонтанное увеличение температуры в обжиговой печи. В результате этого может быть уменьшено количество топлива, подаваемого извне, что позволяет снизить расходы на выделение никеля. Различные количества никельсодержащих отходов можно смешивать с никелевой рудой как в смесителе, так и в обжиговой печи. Как правило приготовляют смеси, в которых содержится I-10 % никельсодержащих отходов.
Окисленную смесь по линии 9 направляют в плавильную печь С, где ее нагревают до температуры 1600-1700 °С. Для плавления используют электрические печи. Расплавленную руду по линии 10 подают в реактор восстановления Д; последний представляет собой один или несколько больших ковшей. По линии 11 в реактор подают восстановитель. Смесь энергично перемешивают для улучшения контакта между восстановителем и расплавленной рудой. В качестве восстановителей могут быть использованы, например, кремний или ферросилиций. Можно также использовать углерод, особенно при применении печей с погружением. Обычно используют
ферросилиций 45-55 % Si. По окончании процесса перемешивание прекращают. Никель оседает на дне реактора, а шлак сгребают с поверхности и выводят по линии 12. Шлак направляют либо на гранулирование по линии 14, либо на переработку с целью выделения компонентов по линии 15.
В процессе восстановления происходит накопление никеля в ковше; его выводят оттуда полиции 13. Примеси, присутствующие в получаемом никеле, такие как фосфор, удаляют на последующих стадиях очистки в виде шлаков. Если в процессе используются железоникелевые руды, например латерит, то в результате получается ферроникель. При добавлении никельсодержащих отходов, таких как отработанные катализаторы, в смеситель А и (или) обжиговую печь В увеличивается количество получаемого ферроникеля и (или) ферроникеля с повышенным содержанием никеля. Увеличение производительности зависит от природы и количества добавляемых никельсодержащих отходов. Как правило в ферроникеле содержится 45-55 % Ni. При добавлении никельсодержащих отходов количество никеля н^получаемом ферроникеле может быть увеличено на 4-5 % .
При использовании низкопроцентных руд может быть получен ферроникель с обычным содержанием никеля.
В промышленных процессах, в которых используются соединения никеля, часто образуются отходы с низким содержанием никеля, из которых он все же может быть извлечен. Типичным примером является каталитический процесс производства акрилатов с использованием карбонила никеля. В сточных водах этого процесса содержится ~ 4% Ni. Для повышения экономичности процесса этот никель необходимо выделять. Аналогичным образом извлечение никеля необходимо и в случае других процессов, в которых образуются отходы с низким содержанием никеля.
Выделение никеля из таких материалов связано с рядом проблем. Поскольку никель присутствует в малых количествах, необходимо достичь возможно более полной степени извлечения. Так как в материале содержатся другие элементы, например железо, медь и сера, а также различные органические соединения, то никель необходимо отделять от них. Никель должен быть выделен в таком виде, в котором его можно сразу использовать или хотя бы в виде, требующем минимальной дополнительной обработки. Все реагенты, используемые в процессе выделения, должны быть регенерируемыми, если они не расходуются в процессе полностью. Стоимость процесса выделения должна быть достаточно низкой, по крайней мере сравнимой со стоимостью никеля аналогичного качества, имеющегося в продаже. В процессе выделения не должно образовываться отходов, загрязняющих атмосферу или водоемы. В идеале процесс должен быть непрерывным, с рециклом всех компонентов.
Всем этим требованиям удовлетворяет процесс, разработанный М. С. Брауном, Р. М. Барчем и Г. М. Бартом (патент США 4 131641, 26 декабря 1978 г.; фирма «Ром энд Хаас Компани»), Схема этого процесса показана на рис. 126.
Сточные воды, содержащие никель, I подают в фильтрационный аппарат 2, где после фильтрования остаток промывают водой 3. Промывку проводят до получения в остатке постоянной максимальной концентрации никеля. При этом в промывных водах будет содержаться постоянная минимальная концентрация растворимых компонентов, таких как соединения меди, железа и др. Остаток от фильтрования по линии 4 направляют в резервуар 5, где его суспендируют в подаваемом туда же концентрированном растворе хлорида никеля. Последний частично рециркулируется из системы по линиям 21 и 22.
" ’t Полученную суспензию по линии 6 подают в реактор 9. В реактор последовательно добавляют раствор окислителя но линии 7, раствор для абсорбции газов, насыщенный хлористым водородом, по линии 18 и безводный хлористый водород по линии 8. Реакция протекает с выделением тепла и заканчивается в тот момент, когда
смесь приобретает зеленую окраску. Перед изменением окраски происходит увеличение скорости возрастания температуры. Время реакции можно регулировать путем изменения скорости подачи хлористого водорода и скорости отвода хлористого водорода в абсорбер для отходящих газов 17. Углекислый газ и избыток хлористого водорода из реактора через скруббер по линии 11 подается в абсорбер 17, откуда углекислый газ выбрасывается в атмосферу.
После охлаждения реакционной смеси устанавливают величину pH = 0,3-г-2,5, добавляя основание по линии 10. После этого смесь по линии 12 подают на фильтр 13. Осадки, содержащие железо и серу, удаляют, а фильтрат по линии 19 подают на фильтр 20 для окончательной фильтрации и установления pH.
На этой стадии нз получаемого концентрированного раствора хлорида никеля можно удалить медь, использовав подходящий комплексующий агент. Конечный продукт выводят по линии 21, часть раствора хлорида иикеля по линии 22 возвращается в резервуар 5 для приготовления суспензии. Остаток от фильтрования промывают водой 14, жидкую фазу по линии 16 направляют в абсорбер 17, где ее используют для промывки избыточного хлористого водорода, выходящего из реактора 9.
Описанный процесс позволяет чрезвычайно эффективно проводить выделение никеля из отходов промышленности с низким содержанием никеля. При непрерывном проведении процесса из системы выводятся только промывная вода со стадии первичной промывки и промытый остаток от фильтрования.