Крупнейшими событиями протерозоя считаются появление эукариот. Развитие жизни на земле - протерозойская эра

Продолжительность периода

Периоды протерозойской эры

635 млн.л.н. - 542 млн.л.н.

Эдиакарий

Неопротерозой

Протерозой

850 млн.л.н. - 635 млн.л.н.

Криогений

1 млрд.л.н. - 850 млн.л.н.

Тоний

1200 млн.л.н.- 1 млрд.л.н.

Стений

Мезопротерозой

1400 млн - 1200 млн.л.н.

Эктазий

1600 млн - 1400 млн. л.н.

Калимий

1800 млн - 1600 млн.л.н.

Статерий

Палеопротерозой

2050 млн - 1800 млн.л.н.

Орозирий

2,3 млрд - 2050 млн.л.н.

Риасий

2,5 - 2,3 млрд.л.н.

Сидерий

Деление протерозойской эры на отдельные периоды не случайно и базируется на стратиграфических исследованиях. Так, палеопротерозой – время достижения кислородом «точки Пастера» – 1 % от его содержания в атмосфере, современной нам. Произошло это событие 2 млрд. лет назад и носит название кислородной катастрофы. В это время зародились первые одноклеточные аэробные организмы. По мнению ученых такая концентрация кислорода достаточна для того, чтобы обеспечить им устойчивую жизнедеятельность. В отличии от аэробных анаэробные организмы, разнообразие которых в то время было существенно больше, в большинстве своём вымерли. Для них молекулярный кислород был смертелен.

Несмотря на резкое уменьшение концентрации диоксида углерода в раннепротерозойской атмосфере, содержание кислорода в ней по-прежнему оставалось низким: менее 1% всей атмосферы. Связано это было с тем, что в мантии раннепротерозойского возраста ещё сохранилось 4-6% металлического железа и оно поглощало кислород.

К началу протерозойской эры масса воды в гидросфере Земли увеличилась настолько, что отдельные протоокеаны стали сливаться в единый Мировой океан и его поверхность покрыла средний уровень рифтовых зон на гребнях срединно-океанических хребтов. На этом первом тектоно-геохимическом рубеже за счёт проникновения океанской воды в рифтовые зоны степень гидратации океанической коры раннего протерозоя стала резко возрастать. Примерно за 600 млн. лет океаническая кора полностью насытилась водой, и около 2 млрд. лет назад поверхность океана уже успела "оторваться" от гребней срединно-океанических хребтов и вновь начала повышаться.

К концу раннего протерозоя, атмосфера Земли в основном состояла только из азота с небольшими добавками водяного пара, аргона, однако содержание СО2 и кислорода было менее 1%. Это время называют временем начала первого кризиса загрязнения" – загрязнения атмосферы кислородом. За неполных 200 млн. лет его содержание в протерозойской атмосфере выросло в 15 раз, достигнув 15% от текущего уровня. Основным поставщиком атмосферного кислорода были фотосинтезирующие растения и бактерии, возникшие ещё в архейскую эру.
Кроме кислородной катастрофы в эпоху палеопротерозоя наступает первая стабилизация континентов.

Следующий за палеопротерозоем мезопротерозой – время формирования суперконтинента Родиния. Произошло это событие 1150 млн. лет. Родиния, по мнению некоторых учёные не являлась первым суперконтинентом в истории Земли, хотя достоверных фактов такого утверждения не найдено до сих пор.

Кроме того именно к этому временному интервалу относятся древнейшие ископаемые останки животных, что связано с формированием у них твёрдого скелета.

Развитие жизни в архейскую эру.

Архей – самая древняя эра, началась более 3,5 млрд. лет назад и продолжался около 1 млрд. лет. Жизнь зародилась в архейскую эру. Поскольку первые живые организмы еще не имели никаких скелетных образований, от них почти не осталось следов. Однако наличие среди архейских отложений пород органического происхождения - известняков, мрамора, графита и других - указывает на существование в эту эру примитивных живых организмов. Ими были одноклеточные доядерные организмы (прокариоты): бактерии и сине-зеленые водоросли.

В архейскую эру произошли крупные ароморфозы: возникновение клеток с клеточным ядром, полового процесса, фотосинтеза и многоклеточности.

Половой процесс – расширяет возможности естественного отбора, повышает возможность приспособления к условиям среды вследствие создания бесчисленных комбинаций в хромосомах. Новый способ размножения как полезный в сохранении видов был закреплен естественным отбором, и теперь он преобладает в животном и растительном мире.

Возникновение фотосинтеза положило начало разделению единого ствола жизни на два – растения и животные – по способу питания и типу обмена веществ. Насыщение воды кислородом, накопление его в атмосфере и наличие пищи создавали предпосылки для развития животных в воде, защищавшей живые организмы от губительного ультрафиолетового излучения. Со временем в атмосфере стал образовываться озон, поглощающий почти все ультрафиолетовое излучение – защита жизни на поверхности воды и суши. Жизнь в воде была возможна благодаря тому, что вода защищала организмы от губительного действия ультрафиолетовых лучей. Именно поэтому море смогло стать колыбелью жизни.

Возникновение многоклеточного строения повлекло усложнение в организации живых существ: дифференциацию тканей, органов и систем, их функций.

Пути эволюционных преобразований первых многоклеточных были различны.

Некоторые перешли к сидячему образу жизни и превратились в организмы типа губок. Другие стали ползать по субстрату с помощью ресничек - плоские черви. Третьи сохранили плавающий образ жизни. Приобрели рот и дали начало кишечнополостным.

Со временем в первородном океане стали иссякать органические вещества, накопившиеся в нем абиогенным путем. Появление аутотрофных организмов, в первую очередь зеленых растений, обеспечило дальнейший непрерывный синтез органических веществ, благодаря использованию солнечной энергии а, следовательно, существование и дальнейшее развитие жизни.

Развитие жизни в протерозойскую эру.

Протерозойская эра – самая длинная в истории Земли. Она продолжалась около 2 млрд. лет. На границе архейской и протерозойской эры произошел первый великий период горообразования. Он привел к значительному перераспределению площадей суши и моря на Земле. Эти изменения лика Земли вынесли не все виды организмов, многие из них вымерли. Было уничтожено и большинство ископаемых останков, благодаря чему так мало известно о жизни в архейскую эру.

В течение этой эры бактерии и водоросли достигают исключительного расцвета. Чрезвычайно интенсивный процесс отложения осадков шел с участием организмов. Известно, что осадочное железо – продукт жизнедеятельности железобактерий. К протерозою относится образование крупнейших залежей железных руд на Земле (курские, криворожские руды, железняки Верхнего озера в США и др.). Господство сине-зеленых сменяется обилием зеленых водорослей, в т.ч. многоклеточных прикрепленных к дну. Это потребовало расчленения тела на части. Важнейшим ароморфозом было возникновение двухсторонней симметрии, которая привела к дифференцировке тела на передний и задний конец, а также на брюшную и спинную стороны. Передний конец является местом, где развиваются органы чувств, нервные узлы, а в дальнейшем и головной мозᴦ. Спинная сторона выполняет защитную функцию, в связи, с чем здесь развиваются различные кожные железы, механические образования (щетинки, волоски), покровительственная окраска. Большинство животных протерозоя было представлено многоклеточными. В морях жили не только низшие многоклеточные – губки и радиально симметричные кишечнополостные; появляются и двухсторонне симметричные. Среди последних известны кольчатые черви – от них произошли моллюски и членистоногие. К концу протерозоя в морях появляются древнейшие представители членистоногих – ракоскорпионы.

Также от древнейших животных с двусторонней симметрией произошли иглокожие и хордовые, имеющие между собой ряд сходных признаков, выражающихся в характере» развития, характере образования скелета, строении кожи и отличающихся по этим признакам от других типов животных. В протерозое появились и древнейшие хордовые - бесчерепные. Их представитель в современной фауне - ланцетник.

На суше во влажных местах могли обитать бактерии, сине-зеленые водоросли, животные типа простейших. Они были первыми почвообразователями.

На смену одноклеточным и колониальным формам пришли многоклеточные. Жизнь стала геологическим фактором. Живые организмы меняли форму и состав земной коры, формировали ее верхний слой - биосферу. В результате фотосинтеза изменился состав атмосферы. Накопление кислорода в атмосфере способствовало развитию высших гетеротрофных организмов- животных.

Так же накопление кислорода в атмосфере привело к формированию озонового экрана в атмосфере. Суша безжизненна, но по берегам водоемов начались почвообразовательные процессы в результате деятельности бактерий и микроскопических водорослей.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Животные Организмы. В конце протерозоя, 900-1000 млн. лет назад, возникли первые многоклеточные животные. Древние многоклеточные растения и животные жили в придонных слоях океана. Большинство животных позднего протерозоя были представлены многоклеточными формами. Конец протерозоя называют "веком медуз". Возникают кольчатые черви, от которых произошли моллюски и членистоногие. В течении протерозоя господство пред ядерных организмов (прокариот) сменилось господством ядерных (эукариот). На смену одноклеточным и колониальным формам пришли многоклеточные. Жизнь стала геологическим фактором. Живые организмы, изменяя формы и состав земной коры, формировали биосферу Земли, а в результате фотосинтеза изменился состав атмосферы. Накопление кислорода в атмосфере способствовало появлению и развитию высших организмов - животных; предполагается, что к концу протерозоя возникли все группы животных, кроме позвоночных.

Слайд 7

Описание слайда:

Вывод: В течении протерозоя господство прокариот сменилось господством эукариот. На смену одноклеточным и колониальным формам пришли многоклеточные. Жизнь стала геологическим фактором. Живые организмы меняли форму и состав земной коры, формировали ее верхний слой - биосферу. В результате фотосинтеза изменился состав атмосферы. Накопление кислорода в атмосфере способствовало развитию высших гетеротрофных организмов- животных.

Как уже упоминалось, в протерозое сформировались все ныне известные платформы и щиты. В середине протерозоя древние платформы были объединены в один суперконтинент Мегагею. В рифее все платформы южного полушария были объединены в один материк Гондвану, а платформы северного полушария (Северо-Американская, Восточно-Европейская, Сибирская, Китайская) составляли материк Лавразию.

Платформенные области длительное время сохраняли большую тектоническую подвижность, и рельеф их оставался достаточно контрастным и динамичным. Довольно интенсивно происходили процессы размыва, переноса и аккумуляции осадков. На выровненных приподнятых участках под воздействием экзогенных процессов возникли довольно мощные коры выветривания, что объясняется существованием высоких температур, большого количества влаги и свободного кислорода в атмосфере.

Благодаря деятельности водорослей в протерозое атмосфера и гидросфера обогатились свободным кислородом, возник озоновый экран, предохранявший Землю от жесткой радиации. Высокое содержание углекислоты в атмосфере повлияло на формирование парникового режима на земной поверхности. Климат, как и в настоящее время, был в основном обусловлен солнечной радиацией. Увеличение площади материков привело к разделению климата на морской и континентальный.

Наряду с показателями влажных и жарких условий в протерозойскую эру встречаются индикаторы аридного и даже холодного типов климата. Имеющиеся немногочисленные фактические данные позволяют считать, что эпохи господства аридного климата в определенные отрезки времени сменялись гумидными.

Обращает на себя внимание присутствие среди толщ протерозоя типичных ледниковых образований - тиллитов. Они обладают всеми чертами современных морен и встречаются наряду с такими неоспоримыми показателями деятельности льда, как отполированные ложа, "курчавые скалы", "бараньи лбы", эрратические валуны, ледниковые штриховки и т. д.

Наиболее древние образования, напоминающие тиллиты, встречаются среди архейских толщ в пределах Канадского щита и в юго-западной части Австралии. Однако достоверных следов возможного оледенения такого древнего возраста до сих пор не обнаружено.

Одно из первых оледенений в истории Земли произошло около 2,5 млрд. лет назад в протерозое. Следы этого оледенения найдены в Южной Африке. Они представлены сильно переработанными отложениями горных ледников. Один из крупнейших ледников располагался в Канаде.

Более молодые ледниковые отложения имеют возраст 700-800 млн. лет. В Экваториальной Африке в позднем рифее обнаружены два ледниковых горизонта. Оледенением, возраст которого оценивается в 740-780 млн. лет, была охвачена территория Анголы, Замбии, Намибии и ЮАР. Близкий возраст имеют ледниковые образования Австралии, распространенные от южных до северо-западных частей этого материка.

Тиллиты обнаружены и в Европе, но они моложе. Их возраст 650-670 млн. лет. Близкий возраст имеют тиллиты Западной Африки, Австралии, Южного и Центрального Китая. Это позволяет предполагать, что в конце рифея на Земле установились довольно холодные условия и обширные территории покрывались мощными ледниковыми толщами.

На основании встречающихся пачек осадочных пород, переслаивающихся с тиллитами, можно предполагать, что ледниковые эпохи неоднократно сменялись межледниковыми и, следовательно, в этом отношении между четвертичным, раннепротерозойским и тем более вендским оледенениями практически отсутствуют какие-либо различия. Следовательно, ледниковые горизонты протерозоя должны были образоваться в результате действия принципиально тех же геологических процессов, что и моренные и генетически связанные с ними отложения в период четвертичного оледенения.

Итак, в протерозое имели место оледенения, однако в течение большей части этого времени на Земле было довольно жарко. Доказательства жаркого аридного климата встречаются в рифее. Это красноцветные континентальные карбонатные песчаники с трещинами усыхания, дюнной косой слоистостью, ветровой рябью и следами ветровой эрозии на поверхностях напластований. Наряду с ними встречаются толщи, сформированные в обстановке обильного увлажнения, - разнообразные аллювиальные (пойменные, дельтовые) отложения с характерной косой слоистостью, каолинитовые глины, кварцевые пески и т. д.

Несмотря на климатическую дифференциацию, особенно в конце протерозоя, надо признать, что по сравнению с современной эпохой на Земле в те далекие времена климат был однообразнее. Это объясняется небольшой толщиной атмосферы, высоким содержанием в ней углекислого газа и значительной площадью океанов и морей. Парниковый режим определял существование высокой среднегодовой температуры. В позднем рифее среднегодовые температуры, судя по характеру карбонато-накопления (обилие рифогенных толщ), широкому развитию кор выветривания, своеобразных организмов, а также данным определения абсолютных значений температур методом изотопной и магнезиальной палеотермометрии, были довольно высокими. Исходя из соотношения тяжелого и легкого изотопов кислорода в кремнистых и карбонатных породах протерозоя, средняя температура земной поверхности составляла 50-60°С, а позднее снизилась до 40°С.

Все возрастающие процессы фотосинтеза привели к значительному обогащению атмосферы и гидросферы свободным кислородом. Это в свою очередь отразилось не только на развитии биологических процессов, но и на процессах выветривания и осадконакопления. Сокращается объем формирования железных руд, и места их образования постепенно смещаются в прибрежные и даже на континентальные участки. Появление атмосферного кислорода обусловило переход этих соединений в окисные формы и резко ограничило миграционные способности железа и марганца. Постепенно сократились площади доломитообразования, и в конце протерозоя они сместились в области с сильна засушливым климатом.

В растительном царстве рифея господствовали водоросли (главным образом синезеленые). Животное царство было гораздо менее обильным, но характеризовалось довольно значительным разнообразием в систематическом отношении.

Наиболее многочисленной группой организмов в течение всего протерозоя были бактерии, принимавшие активное участие в процессах разложения, окисления и даже аккумуляции разнообразных веществ. Активное участие бактерий в породообразовании способствовало широкому распространению различных железистых пород, в том числе и осадочных железных руд, графитовых сланцев, высокоуглеродистых и высокоглиноземистых горных пород. Вероятно, не последняя роль в процессах выветривания горных пород принадлежала микроорганизмам.

В течение протерозойской эры развивались основные группы водорослей - от примитивных синезеленых до более высокоорганизованных. Они играли ведущую роль в постепенном удалении из атмосферы углекислого газа и увеличении свободного кислорода. Велика их породообразующая роль, особенно в рифее, когда широким распространением пользовались разнообразные водорослевые известняки и доломиты. Из рифейских отложений известны многочисленные строматолиты, онколиты и катаграфии - известковые и доломитовые стяжения, возникшие в результате жизнедеятельности водорослей.

Строматолиты - это различной величины слоистые стяжения в виде наростов, имеющие караваеобразную и столбообразную формы. Онколиты - это концентрические желваковые образования, а катаграфии - стяжения неправильной формы без слоистости в виде комков. Концентрическое строение строматолитов и онколитов вызвано, вероятно, сезонным развитием водорослей, подобно кольцам нарастания у современных деревьев умеренного пояса. Известь откладывалась вокруг нитей и клеток колоний.

До недавнего времени о жизни в докембрии могли судить только по остаткам разнообразных водорослей, грибов, бактерий. Возникшие в последние годы биохимические и палеонтологические направления позволили обнаружить многочисленные остатки организмов в докембрийских породах. В наиболее молодых комплексах рифейских образований были обнаружены остатки древнейших многоклеточных животных. Уникальность этой фауны состоит в том, что она, обладая значительным разнообразием, была представлена организмами, у которых полностью отсутствовали минеральные скелетные образования.

В настоящее время бесскелетная фауна позднего докембрия обнаружена в районе Эдиакара в Южной Австралии (поэтому вся древнейшая фауна часто называется эдиакарской), в Великобритании, на юго-западе Африки и Ньюфаундленде, в СССР - Подольском Приднестровье и Карелии.

Эдиакарская фауна состояла в основном из кишечнополостных - медузоподобных, червей, членистоногих и организмов, систематическое положение которых пока не ясно. Она сыграла большую роль в развитии органического мира, являясь предшественником скелетной фауны, хотя прямого и непосредственного продолжения в палеозойскую эру все же не имела. Как считают многие исследователи, эдиакарская фауна скорее всего была побочной ветвью эволюции организмов.

Советский палеонтолог М. А. Федонкин на берегу Белого моря обнаружил огромное количество вендской бесскелетной фауны. Эти организмы представлены свободноплавающими и бентосными (донными) формами размерами от нескольким миллиметров до 30 см.

Одной из особенностей вендской фауны является наличие среди многоклеточных форм ископаемых остатков, напоминающих личинок современных беспозвоночных. В толще вендских пород были найдены остатки, очень похожие на личинки трилобитов и иглокожих, но все они имели размеры крупнее, чем те которые обнаружены в более молодых осадках.

Органический мир протерозоя в основном развивался в морской среде. Отсутствие у организмов позднего протерозоя твердого скелета, возможно, было вызвано высоким содержанием углекислоты в атмосфере и гидросфере. Это приводило к резкому увеличению растворимости извести и затрудняло ее извлечение из воды.

Ландшафты протерозоя, особенно в рифейское время, по сравнению с архейскими более дифференцированы. Хотя насыщенность ландшафтов организмами возросла, мощность биосферы оставалась небольшой, и она не имела повсеместного распространения. Суша в биологическом отношении представляла собой пустыню.

Таким образом, палеогеографические условия протерозоя даже для конечных этапов рифея и венда вырисовываются в довольно общих чертах. К концу протерозоя содержание кислорода в атмосфере увеличилось и составило 1-2%, образовался озоновый экран, который существенно уменьшил жесткую ультрафиолетовую радиацию, резко повысилась соленость океанических вод и возникла климатическая зональность.

Как уже упоминалось, в протерозое сформировались все ныне известные платформы и щиты. В середине протерозоя древние платформы были объединены в один суперконтинент Мегагею. В рифее все платформы южного полушария были объединены в один материк Гондвану, а платформы северного полушария (Северо-Американская, Восточно-Европейская, Сибирская, Китайская) составляли материк Лавразию.
Платформенные области длительное время сохраняли большую тектоническую подвижность, и рельеф их оставался достаточно контрастным и динамичным. Довольно интенсивно происходили процессы размыва, переноса и аккумуляции осадков. На выровненных приподнятых участках под воздействием экзогенных процессов возникли довольно мощные коры выветривания что объясняется существованием высоких температур большого количества влаги и свободного кислорода в атмосфере. Благодаря деятельности водорослей в протерозое атмосфера и гидросфера обогатились свободным кислородом, возник озоновый экран, предохранявший Землю от жесткой радиации. Высокое содержание углекислоты в атмосфере повлияло на формирование парникового режима на земной поверхности. Климат, как и в настоящее время, был в основном обусловлен солнечной радиацией. Увеличение площади материков привело к разделению климата на морской и континентальный.
Наряду с показателями влажных и жарких условий в протерозойскую эру встречаются индикаторы аридного и даже холодного типов климата. Имеющиеся немногочисленные фактические данные позволяют считать, что эпохи господства аридного климата в определенные отрезки времени сменялись гумидными. Обращает на себя внимание присутствие среди толщ протерозоя типичных ледниковых образований - тиллитов. Они обладают всеми чертами современных морен и встречаются наряду с такими неоспоримыми показателями деятельности льда, как отполированные ложа, «курчавые скалы», «бараньи лбы», эрратические валуны, ледниковые штриховки и т. д.
Наиболее древние образования, напоминающие тиллиты встречаются среди архейских толщ в пределах Канадского щита и в юго-западной части Австралии. Однако достоверных следов возможного оледенения такого древнего возраста до сих пор к обнаружено.
Одно из первых оледенений в истории Земли произошло около 2,5 млрд. лет назад в протерозое. Следы этого оледенения найдены в Южной Африке. Они представлены сильно переработанными отложениями горных ледников. Один из крупнейших ледников располагался в Канаде.
Более молодые ледниковые отложения имеют возраст 700–800 млн. лет. В Экваториальной Африке в позднем рифее обнаружены два ледниковых горизонта. Оледенением, возраст которого оценивается в 740–780 млн. лет, была охвачена территория Анголы, Замбии, Намибии и ЮАР. Близкий возраст имеют ледниковые образования Австралии, распространенные от южных до северо-западных частей этого материка.
Тиллиты обнаружены и в Европе, но они моложе. Их возраст 550–670 млн. лет. Близкий возраст имеют тиллиты Западной Африки, Австралии, Южного и Центрального Китая. Это позволяет предполагать, что в конце рифея на Земле установились довольно холодные условия и обширные территории покрывались мощными ледниковыми толщами.
На основании встречающихся пачек осадочных пород, переслаивающихся с тиллитами, можно предполагать, что ледниковые эпохи неоднократно сменялись межледниковыми и, следовательно, в этом отношении между четвертичным, раннепротерозойским и тем более вендским оледенениями практически отсутствуют какие-либо различия. Следовательно, ледниковые горизонты протерозоя должны были образоваться в результате действия принципиально тех же геологических процессов, что и моренные и генетически связанные с ними отложения в период четвертичного оледенения.
Итак, в протерозое имели место оледенения, однако в течение большей части этого времени на Земле было довольно жарко. Доказательства жаркого аридного климата встречаются в рифее. Это красноцветные континентальные карбонатные песчаники с трещинами усыхания, дюнной косой слоистостью, ветровой рябью и следами ветровой эрозии на поверхностях напластований. Наряду с ними встречаются толщи, сформированные в обстановке обильного увлажнения, - разнообразные аллювиальные (пойменные, дельтовые) отложения с характерной косой слоистостью, каолинитовые глины, кварцевые пески и т. д.
Несмотря на климатическую дифференциацию, особенно в конце протерозоя, надо признать, что по сравнению с современной эпохой на Земле в те далекие времена климат был однообразнее. Это объясняется небольшой толщиной атмосферы, высоким содержанием в ней углекислого газа и значительной площадью океанов и морей. Парниковый режим определял существование высокой среднегодовой температуры. В позднем рифее среднегодовые температуры, судя по характеру карбонато-накопления (обилие рифогенных толщ), широкому развитию кор выветривания, своеобразных организмов, а также данным определения абсолютных значений температур методом изотопной и магнезиальной палеотермометрии, были довольно высокими. Исходя из соотношения тяжелого и легкого изотопов кислорода в кремнистых и карбонатных породах протерозоя, средняя температура земной поверхности составляла 50–60 °C а снизилась до 40 °C.
Все возрастающие процессы фотосинтеза привели к значительному обогащению атмосферы и гидросферы свободным кислородом. Это в свою очередь отразилось не только на развитии биологических процессов, но и на процессах выветривания и осадконакопления. Сокращается объем формирования железных руд, и места их образования постепенно смещаются в прибрежные и даже на континентальные участки. Появление атмосферного кислорода обусловило переход этих соединений в окисные формы и резко ограничило миграционные способности железа и марганца. Постепенно сократились площади доломитообразования, и в конце протерозоя они сместились в области с сильно засушливым климатом.
В растительном царстве рифея господствовали водоросли (главным образом синезеленые). Животное царство было гораздо менее обильным, но характеризовалось довольно значительным разнообразием в систематическом отношении.
Наиболее многочисленной группой организмов в течение всего протерозоя были бактерии, принимавшие активное участие в процессах разложения, окисления и даже аккумуляции разнообразных веществ. Активное участие бактерий в породообразовании способствовало широкому распространению различных железистых пород, в том числе и осадочных железных руд, графитовых сланцев, высокоуглеродистых и высокоглиноземистых горных пород. Вероятно, не последняя роль в процессах выветривания горных пород принадлежала микроорганизмам.
В течение протерозойской эры развивались основные группы водорослей - от примитивных синезеленых до более высокоорганизованных. Они играли ведущую роль в постепенном удалении из атмосферы углекислого газа и увеличении свободного кислорода. Велика их породообразующая роль, особенно в рифее, когда широким распространением пользовались разнообразные водорослевые известняки и доломиты. Из рифейских отложений известны многочисленные строматолиты, онколиты и катаграфии - известковые и доломитовые стяжения, возникшие в результате жизнедеятельности водорослей.
Строматолиты - это различной величины слоистые стяжения в виде наростов, имеющие караваеобразную и столбообразную формы. Онколиты - это концентрические желваковые образования, а катаграфии - стяжения неправильной формы без слоистости в виде комков. Концентрическое строение строматолитов и онколитов вызвано, вероятно, сезонным развитием водород, подобно кольцам нарастания у современных деревьев умеренного пояса. Известь откладывалась вокруг нитей и клеток колоний.
До недавнего времени о жизни в докембрии могли судить только по остаткам разнообразных водорослей, грибов, бактерий.

Возникшие в последние годы биохимические и палеонтологические направления позволили обнаружить многочисленные остатки организмов в докембрийских породах. В наиболее молодых комплексах рифейских образований были обнаружены остатки древнейших многоклеточных животных. Уникальность этой фауны состоит в том, что она, обладая значительным разнообразием, была представлена организмами, у которых полностью отсутствовали минеральные скелетные образования.
В настоящее время бесскелетная фауна позднего докембрия обнаружена в районе Эдиакара в Южной Австралии (поэтому вся древнейшая фауна часто называется эдиакарской), в Великобритании, на юго-западе Африки и Ньюфаундленде, в СССР - в Подольском Приднестровье и Карелии.
Эдиакарская фауна состояла в основном из кишечнополостных - медузоподобных, червей, членистоногих и организмов систематическое положение которых пока не ясно. Она сыграла большую роль в развитии органического мира, являясь предшественником скелетной фауны, хотя прямого и непосредственного продолжения в палеозойскую эру все же не имела. Как считают многие исследователи, эдиакарская фауна скорее всего была побочной ветвью эволюции организмов.
Советский палеонтолог М. А. Федонкин на берегу Белого моря обнаружил огромное количество вендской бесскелетной фауны. Эти организмы представлены свободноплавающими бентосными (донными) формами размерами от нескольких миллиметров до 30 см.
Одной из особенностей вендской фауны является наличие среди многоклеточных форм ископаемых остатков, напоминающих личинок современных беспозвоночных. В толще вендских пород были найдены остатки, очень похожие на личинки трилобитов и иглокожих, но все они имели размеры крупнее, чем те, которые обнаружены в более молодых осадках.
Органический мир протерозоя в основном развивался в морской среде. Отсутствие у организмов позднего протерозоя твердого скелета, возможно, было вызвано высоким содержанием углекислоты в атмосфере и гидросфере. Это приводило к резкому увеличению растворимости извести и затрудняло ее извлечение из воды.
Ландшафты протерозоя, особенно в рифейское время, по сравнению с архейскими более дифференцированы. Хотя насыщенность ландшафтов организмами возросла, мощность биосферы оставалась небольшой, и она не имела повсеместного распространения. Суша в биологическом отношении представляла собой пустыню.
Таким образом, палеогеографические условия протерозоя даже для конечных этапов рифея и венда вырисовываются в довольно общих чертах. К концу протерозоя содержание кислорода в атмосфере увеличилось и составило 1–2 %, образовался озоновый экран, который существенно уменьшил жесткую ультрафиолетовую радиацию, резко повысилась соленость океанических вод и возникла климатическая зональность.