Факторы регуляции развития человека и животных на разных этапах онтогенеза. Системы регуляции онтогенеза Генетическая регуляция организма на разных стадиях онтогенеза

12. Назовите клеточные механизмы, срабатывающие в процессе гаструляции у млекопитающих.

Дробление заканчивается с образованием морулы, клетки которой подразделяются на внутреннюю массу клеток, из которых впоследствии развивается эмбрион, и наружный полый клеточный пузырек трофобласт. Из него развиваются провизорные органы. Эта стадия называется бластоцистой. Собственно гаструляция начинается с обособления слоя клеток эмбриобласта, обращенного в полость бластоцисты. Так образуется гипобласт - будущая энтодерма зародыша. Клетки краевой зоны этого зачатка распространяются по внутренней поверхности трофобласта, ограничивая полость желточного мешка, который у плацентарных млекопитающих рудиментарен. Гипобласт растет в ширину и вся внутренняя клеточная масса увеличивается и превращается в дисковидную клеточную пластинку, сходную с зародышевым диском у птиц и рептилий. Затем отдельные клетки мигрируют и участвуют в образовании всех зародышевых листков. Между клетками внутренней клеточной массы появляется щель, которая затем превращается в амниотическую полость.

Ответ: Дифференцировка, пролиферации, перемещение, сортировка, адгезия.

13. В лаборатории Эдельмана (США) были проделаны следующие опыты. Сделайте логический вывод из них.

В культуру клеток животных тканей, которые первоначально были отделены друг от друга, не организованы в пространстве и напоминали мезенхиму, были введены ДНК, кодирующие белки клеточной адгезии (САМ от англ. Се11-аdhesion molecules). После этого клетки объединились в пласт, напоминающий эпителиальный. Когда пласт сформировался, между клетками возникли щелевые и адгезивные контакты.

Ответ: Молекулы клеточной адгезии (SAM) ответственны за взаимодействие клеток в зародыше .

14. Какие выводы можно сделать из следующих экспериментах:

1) Если путем центрифугирования (у морского ежа) или перешнуровки оплодотворенных яйцеклеток (у тритона) получить их безъядерные фрагменты, то в обоих случаях дробление при участии ахроматинового митотичёского аппарата может привести к образованию безъядерных бластулоподобных структур. Однако дальше развитие не пойдет.

2)Если объединить в опыте безъядерную цитоплазму яйцеклетки одного вида с ядром сперматозоида другого вида, то во многих случаях развитие таких клеток останавливается, достигнув стадии гаструлы.

Ответ: Опыты демонстрирует тот факт, что самые начальные этапы развития определяются продуктами материнских генов яйцеклетки и только к началу гаструляции активизируются гены зиготы.

15. Какое явление наблюдал Г. Шпеман на примере формирования глаза?

Наиболее ранняя закладка глаза представляет участок ткани промежуточного мозга, глазной пузырь, растущий по направлению к кожной эктодерме, где на месте их сближения образуется хрусталик в виде впячивания эктодермы. Если на одной стороне зародыша удалить закладку глазного пузыря, то на этой стороне хрусталик не образуется. Если, наоборот, закладку глазного пузыря пересадить под кожу в другом месте головы или туловища, то здесь на границе эктодермы возникает хрусталик.



Ответ: Шпеман наблюдал явление эмбриональной индукции.

16. Какое явление было установлено в опытах эмбриологов Дриш и Шпемана?

Они показали, что ядра ранних бластомеров морских ежей и тритонов способны обеспечить дифференцировку любых типов клеток. В их опытах бластомер, который в норме должен былдать начало лишь части зародыша, оказался способным дать в процессе развития целый организм.

Ответ: Явление эквивалентности генома разных клеток зародыша – тотипотентность.

Регенерация

17. При осмотре травматологом установлено, что на голове у больного открытая рана. Рентгенологическое исследование показало раздробление плоских костей черепа. Известно, что в норме плоские кости не регенерируют. Какие методы восстановления целостности костей черепной коробки Вы могли бы предложить в данном случае для заживления дефекта?

Ответ: ввести в рану индуктор в виде костных опилок, который вызовет активацию незрелых клеток соединительной ткани края костного дефекта продуктами распада костных опилок.

18. Во время рыбалки на озере был пойман рак, у которого обнаружили вместо левого глаза длинный усик. Как Вы можете объяснить наличие на месте глаза совершенно другого органа у рака?

Ответ: явление гетероморфизма, связанного с нарушением нервной регуляции.

19. Ожог составляет 10% от поверхности тела. Какой тип и механизм регенерации будет в данном случае?

Ответ : репаративная регенерация, механизм – эпиморфоз.

20. Больному требуется срочная пересадка почки. Какой тип трансплантации будет идеален в этом случае? И почему?

Ответ: аллотрансплантация от близкого родственника, потому что трансплантация тесно связана с трансплантационным иммунитетом, приводящего к отторжению тканей и органов.

21. Больному удалили одну почку, по истечению некоторого времени она стала увеличиваться. Какой процесс в данном случае мы можем наблюдать?

Ответ: процесс компенсаторной гипертрофии.

Биология развития изучает способы генетического контроля индивидуального развития и особенности реализации генетической программы в фенотип в зависимости от условий. Под условиями понимаются различные внутриуровневые и межуровневые процессы и взаимодействия – внутриклеточные, межклеточные, тканевые, внутриорганные, организменные, популяционные, экологические.

Очень важными являются исследования конкретных онтогенетических механизмов роста и морфогенеза. К ним относятся процессы пролиферации (размножения) клеток, миграции (перемещения) клеток, сортировки клеток, их запрограммированной гибели , дифференцировки клеток, контактных взаимодействий клеток (индукция и компетенция), дистантного взаимодействия клеток, тканей и органов (гуморальные и нервные механизмы интеграции). Все эти процессы носят избирательный характер, т.е. протекают в определенных пространственно-временных рамках с определенной интенсивностью, подчиняясь принципу целостности развивающегося организма. Поэтому одной из задач биологии развития является выяснение степени и конкретных путей контроля со стороны генома и одновременно уровня автономности различных процессов в ходе онтогенеза.

Большую роль в процессах онтогенеза играет деление клеток, поскольку:

– благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм;

– пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма;


– избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов.

В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Исследования показали, что количество циклов клеточных делений в ходе онтогенеза генетически предопределено . Однако известна мутация, которая изменяет размеры организма за счет одного дополнительного клеточного деления. Эта мутация описана у Drosophila melanogaster, она наследуется по рецессивному сцепленному с полом типу. У таких мутантов развитие протекает нормально на протяжении всего эмбрионального периода. Но в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи-мутанты продолжают оставаться в личиночном состоянии еще дополнительно 2–5 суток. За это время у них происходит 1–2 дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.



Описан ряд мутаций у мышей, вызывающих снижение пролиферативной активности и следующие за этим фенотипические эффекты – микрофтальмия (уменьшение размеров глазных яблок), отставание роста и атрофия некоторых внутренних органов из-за мутаций, затрагивающих центральную нервную систему.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.

Миграция клеток имеет очень большое значение, начиная с процесса гаструляции и далее в процессах морфогенеза. Нарушение миграции клеток в ходе эмбриогенеза приводит к недоразвитию органов или к их гетеротопиям , изменениям нормальной локализации. Все это представляет собой врожденные пороки развития. Например, нарушение миграции нейробластов приводит к возникновению островков серого вещества в белом веществе, при этом клетки утрачивают способность к дифференцировке. Более выраженные изменения миграции приводят к микрогирии и полигирии (большое число мелких и аномально расположенных извилин больших полушарий), либо к макрогирии (утолщение основных извилин), или же к агирии (гладкий мозг, отсутствие извилин и борозд больших полушарий). Все эти изменения сопровождаются нарушением цитоархитектоники и послойного строения коры, гетеротопиями нервных клеток в белом веществе. Подобные пороки отмечены и в мозжечке.

Для миграции клеток очень важны их способность к амебоидному движению и свойства клеточных мембран. Все это генетически детерминировано, следовательно, и сама миграция клеток находится под генетическим контролем, с одной стороны, и влияниями окружающих клеток и тканей – с другой.

В процессе эмбриогенеза клетки не только активно перемещаются, но и «узнают» друг друга, т.е. образуют скопления и пласты только с определенными клетками. Значительные координированные перемещения клеток характерны для периода гаструляции. Смысл этих перемещений заключается в образовании обособленных друг от друга зародышевых листков с совершенно определенным взаимным расположением. Клетки как бы сортируются в зависимости от свойств, т.е. избирательно . Необходимым условием сортировки являются степень подвижности клеток и особенности их мембран.

Агрегация клеток зародышевых листков с себе подобными объясняется способностью к избирательному слипанию (адгезии ) клеток одного типа между собой. Одновременно это является проявлением ранней дифференцировки клеток на стадии гаструлы.

Избирательная сортировка клеток возможна за счет того, что контакты между подобными клетками сильнее, чем между чужеродными клетками из-за различий в поверхностном заряде их мембран. Установлено, что поверхностный заряд клеток мезодермы ниже, чем клеток экто- и энтодермы, поэтому клетки мезодермы легче деформируются и втягиваются в бластопор в начале гаструляции. Есть также мнение, что контактные взаимодействия между одинаковыми клетками основываются на антигенных свойствах их мембран.

Избирательная адгезия клеток определенного зародышевого листка друг с другом является необходимым условием нормального развития организма. Примером потери клетками способности к избирательной сортировке и слипанию является их беспорядочное поведение в злокачественной опухоли. По-видимому, в обеспечении сортировки клеток важное место принадлежит генетическим механизмам.

Дифференцировка клеток – это постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного зачатка. Этот процесс сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловленные самим ходом эмбриогенеза, обнаруживаются в период гаструляции.

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называется гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это свидетельствует о координированности и интегрированности эмбрионального развития.

В настоящее время общепринятой считается точка зрения на дифференцировку клеток в процессе онтогенеза как на результат последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Таким образом, впервые прозвучала идея о дифференциальной экспрессии генов как основном механизме цитодифференцировки. Уровни регуляции дифференциальной экспрессии генов соответствуют этапам реализации информации в направлении ген → полипептид → признак и включают не только внутриклеточные процессы, но и тканевые и организменные.

Эмбриональная индукция – это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. В настоящее время установлено, что первичным эмбриональным индуктором является хордомезодермальный зачаток в спинной губе бластопора. Но явления индукции многочисленны и разнообразны. Кроме первичной индукции, различают вторичные и третичные , которые могут происходить на более поздних, чем гаструляция, этапах развития. Все эти индукции представляют собой каскадные взаимодействия , потому что индукция многих структур зависит от предшествующих индукционных событий. Например, глазной бокал возникает только после развития передней части головного мозга, хрусталик – после формирования бокала, а роговица – после образования хрусталика.

Индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика.

Различают два вида индукции. Гетерономная индукция – когда один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция – индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

Для того чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора. Установлена химическая природа индукторов – это могут быть белки, нуклеопротеиды, стероиды и даже неорганические вещества. Но специфичность ответа прямо не связана с химическими свойствами индуктора.

Таким образом, генетический контроль онтогенеза очевиден, однако в процессе развития зародыш и его части обладают способностью к саморазвитию, регулируемому самой целостной развивающейся системой и не запрограммированному в генотипе зиготы.

ГОУ ВПО «Сургутский государственный университет ХМАО-Югры»

Методическая разработка

лабораторного занятия № 11 для студентов I -курса.

Тема занятия: « Регуляция онтогенеза ».

Выполнил (а) студент (ка) I курса

Медицинского института

31- _____ группы

Ф. И.О._________________________

_________________________

Сургут, 2010 г.

Цель занятия : Изучить основные механизмы регуляции онтогенеза, критические периоды онтогенеза человека; влияние вредных факторов на плод и механизмы образования пороков развития.

Вопросы для самоподготовки студентов:

1. Регуляционный и мозаичный тип развития, их отличия.

2. В чем сущность дифференцировки клеток?

3. Как происходит регуляция ранних стадий эмбрионального развития; когда начинает функционировать геном зародыша?

4. В чем заключается действие генов в раннем развитии?

5. Как изменяется генетическая потенция ядер клеток в процессе развития?

6. Как осуществляется генетическая регуляция дифференци­ровки?

7. Чем отличается взаимодействие клеток в период дробления, гаструляции, органогенеза?

8. Какое значение имеет контакт бластомеров, к чему приво­дит их разъединение?

9. Возможно ли развитие зародыша млекопитающих из смеси клеток двух-трех зародышей?

10. Каковы основные формы взаимодействия клеток в периоды органогенеза?

11. В чем сущность эмбриональной индукции, ее виды?

12. Каковы химическая структура индукторов и механизм их действия?

13. Какое значение имеет нервная система в регуляции онтоге­неза?

14. В чем сущность гуморальной регуляции онтогенеза, виды регуляторов.

15. Каковы механизмы гормональной регуляции в онтогенезе?

16. Какое значение в эмбриогенезе имеют морфогенетические поля?

17. Каковы возможные пути действия факторов среды, вызы­вающие нарушение эмбриогенеза?

18. Почему эмбриопатии характеризуются более глубокими нарушениями, чем фетопатии?

19. Как осуществляется взаимосвязь материнского организма и плода, каковы последствия ее нарушения?

20. В чем разница между наследственными и ненаследственны­ми врожденными заболеваниями?

21. Что такое фенокопии?

22. Нарушения каких процессов в онтогенезе приводят к поро­кам развития?

23. Что такое критические периоды эмбриогенеза?

24. Что такое тератогены; их классификация, механизм действия?

Задание для студентов.

Работа 1. Регуляция развития плацентарных млекопитающих.

Перепишите табл. 1.

Таблица 1

Периоды онтогенеза

Виды регуляции

генетическая

контактное взаимодействие клеток

эмбриональ­ная индукция

морфо генети­ческие поля

нервная

гормональная (гормоны зародыша)

факторы среды

Прогенез

Эмбриогенез:

Зигота

Зародыш на ста­дии дробления

Бластула

Гаструла

Зародыш на ста­дии органогенеза Зародыш в плод­ный период

Постэмбриональный период

Геном матери

Работа 2. Генетическая регуляция развития организма.

Гены регулируют и контролируют развитие организма на всех этапах онтогенеза (рис. 1).

Рис. 1. Генетический контроль развития млекопитающих [Коню­хов Б. В., 1976].

В овогенезе в цитоплазме яйцеклетки синтезируются и от­кладываются материнские РНК, которые несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позво­ночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начина­ют регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у позвоночных развитие организма регулируется только продуктами деятельности соб­ственных генов зародыша.

Регуляция экспрессии генов в процессе развития организ­мов осуществляется на всех этапах синтеза белка, как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.

Разберите некоторые модели генетической регуляции на уровне транскрипции (рис. 2). Зарисуйте модель 1.

Рис. 2. Генетическая регуляция на уровне транскрипции.

а - модель 1: каскадная эмбриональная индукция; б - модель 2: репрессия ко­нечным продуктом; в - модель 3: регуляция экспрессии генов несколькими генами-регуляторами; г - модель 4: регуляция нескольких групп структурных генов одним геном.

Обозначьте:

С – сенсорный ген;

И – ген-интегратор;

П – промотор;

СГ – структурные гены;

O – индуктор;

Δ – репрессор.

Модель 1. Каскадная эмбриональная индукция (рис. 2, а).

Индуктор 1 взаимодействует с сенсорным геном (С), акти­вируя ген-интегратор (И), продукт деятельности которого дей­ствует через промотор (П) на структурные гены (СГ1, СГ2 и СГ3). В свою очередь продукт деятельности СГ3 является ин­дуктором 2 для структурных генов СГ4, СГ5 и т. д.

Модель 2. Репрессия конечным продуктом (рис. 2, б).

Продукты активности структурных генов в свою очередь ре­прессируют деятельность гена, контролирующего синтез ин­дуктора 1.

Модель 3. Регуляция экспрессии генов несколькими гена­ми-регуляторами (рис. 2, в).

Структурные гены активируются или репрессируются про­дуктами действия нескольких генов.

Модель 4. Регуляция нескольких групп структурных генов одним геном (рис. 2, г).

Индукция или репрессия нескольких структурных генов продуктом деятельности одного гена. Этой моделью можно объяснить плейотропное действие генов, влияние половых гормонов и т. д.

Работа 3. Политенные хромосомы.

В создании тканеспецифических продуктов участвует лишь небольшая часть генома. Места активного синтеза мРНК - пу­фы - хорошо видны в политенных (гигантских) хромосомах и представляют собой расплетенные участки хромосом, образую­щие менее компактную структуру.

а. Изучите микропрепарат под микроскопом при большом увеличении и зарисуйте. Обозначьте: 1 - эухроматин, 2 - гетерохроматин, 3 - пуф.

б. Изучите по рис. 3 участок политенной хромосомы, пре­терпевающий пуфинг (по Grossbach, 1973, из Гилберт С., 1994). Зарисуйте рис. 3, г.

Рис. 3. Процесс пуфинга.

а-г - стадии образования пуфа;

Рис. 3. Процесс пуфинга (Продолжение)

д - пуфинг в политенных хромосомах в динамике.

Работа 4. Регуляционная способность ядер. Клонирование.

В онтогенезе при дифференцировке клеток происходит избирательная экспрессия разных частей генома и ограничение генетических потенций у дифференцированных клеток. Одна­ко в ядрах соматических клеток сохраняются все гены, и в соот­ветствующих условиях они могут реактивироваться и обеспе­чить развитие нормального зародыша. Клонирование - это развитие нового организма, являющегося точной генетической копией родительской особи. У видов, размножающихся поло­вым путем, клонирование происходит при пересадке ядер из соматической клетки в энуклеированную яйцеклетку. Молодая особь при клонировании является точной копией организма-донора ядер соматических клеток. В настоящее время получе­ны путем клонирования животные разных классов, в том числе и млекопитающие. Оказалось, что в процессе, развития генетические потенции ядер соматических клеток снижаются, и чем старше донор соматических ядер, тем ниже процент развития клонированных особей. Кроме того, установили, что генетиче­ские потенции разных клеток донора неодинаковы.

Изучите рисунки по пересадке ядер, взятых из соматических клеток на разных стадиях развития лягушки (по Гёрдон, 1965, из Дьюкар Э., 1978) (рис. 4).

Рис. 4. Пересадка ядер из соматических клеток в яйцеклетки лягушки на разных стадиях развития клеток донора.

Работа 5. Взаимодействие бластомеров в период дробления , (лечебный факультет).

а. Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определен­ном месте зародыша в определенное время. У плацентарных животных до завершения восьмиклеточной стадии разные бластомеры не отличаются друг от друга по морфологии , биохимии и потенциям. Однако компактизация (сближение и увели­чение контакта бластомеров с образованием компактного клеточного шара) приводит к образованию наружных и внутрен­них клеток, которые резко различаются по своим свойствам. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша оп­ределяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Изучите рис. 5, а пересадки бластомеров у зародышей мыши [Минц Б., 1970; Hillman et al., 1972].

color:black;letter-spacing:-.25pt">Рис. 5.

Взаимодействие бластомеров в период дробления.

а - пересадка бластомеров зародышам мыши; б - соединение бластомеров у зародышей мыши: 1 -зародыш, 2 - трофобласт; в - механизмы формирова­ния однояйцевых близнецов и двойниковых уродств у человека: 1 - внутрен­ние клетки бластоцисты; 2 - полость бластоцисты; 3 - зародыш; 4 - полость амниона; 5 - полость хориона; 6 - не полностью разъединенные близнецы.

б. Влияние контакта бластомеров на развитие зародыша. Образование однояйцевых близнецов и двойниковых уродств у человека.

При сохранении полного контакта бластомеров развивается один организм. Также один организм развивается при объеди­нении бластомеров нескольких зародышей. После специально­го воздействия бластомеры нескольких четырехклеточных за­родышей могут соединиться с образованием общей морулы. Например, если соединить бластомеры зародышей трех разных линий с контрастной окраской (белой, черной и рыжей), фор­мируется морула, из которой развиваются мыши с разноокрашенными участками кожи. Это связано с перемешиванием бла­стомеров зародышей разных линий мышей, часть из которых пошла на образование зародыша и свидетельствует о том, что наследственный материал бластомеров не смешивается.

Изучите рис. 5,б - соединение бластомеров у зародышей [Гилберт С, 1993].

Потеря контакта между бластомерами изменяет их судьбу. Разъединение клеток зародыша на ранних этапах развития при­водит к образованию идентичных близнецов, так как ранние бластомеры тотипотентны. Неполное разъединение клеток за­родыша приводит к возникновению двойниковых уродств, ко­торые могут быть у разных видов беспозвоночных, позвоноч­ных животных и у человека.

Рассмотрите слайды, таблицы, рисунки с примерами двой­никовых уродств у разных видов животных и человека.

Изучите рис. 5, в, на котором показан механизм образова­ния однояйцевых близнецов и двойниковых уродств у человека [из: Гилберт С., 1993, переработано].

Рис. 5. Продолжение.

Примерно в 33 % случаев разъединение бластомеров идет до образования трофобласта. Близнецы имеют собственные хорион и амнион.

Разъединение бластомеров после образования трофобласта, но до образования амниона происходит примерно в 66 % случаев. Близнецы имеют собственные амниотические оболочки, но находятся в общем хорионе.

Разъединение бластомеров после образования ам­ниона происходит редко, в нескольких процентах случаев. Близнецы имеют общие амнион и хорион.

Неполное разъединение клеток зародыша. Близне­цы имеют общие отделы тела (двойниковое уродст­во).

Работа 6. Клеточные процессы в периоды гаструляции и ор­ганогенеза.

Изучите табл. 2, рис. 6 и 7, слайды и препараты по эм­бриогенезу животных. Перепишите таблицу.

Рис. 6. Последовательные этапы формирования лица (вид спереди). а - 4-недельный зародыш (3,5 мм.); б - 5-недельный зародыш (6,5 мм); в - 5,5-недельный зародыш (9 мм); г - 6-недельный зародыш (12 мм); д - 7-недельный зародыш (19 мм); е - 8-недельный зародыш (28 мм). 1 - лобный выступ; 2 - обонятельная плакода; 3 - носовая ямка; 4 - ротовая пластинка; 5 - ротовое отверстие; 6 - верхнечелюстной отросток; 7 - нижнечелюстная дуга; 8 - гиоидная дуга; 9 - медиальный носовой отросток; 10 - латеральный носовой отросток; 11 - носослезная бороздка; 12 - гиомандибулярная щель; 13 - область филтрума, сформированная слившимися медиальными носовыми отростками; 14 - наружное ухо; 15 - слуховые бугорки вокруг гиомандибулярной щели; 16 - подъязычная кость; 17 - хрящи гортани.

Таблица 2

Формы клеточных взаимодействий

Образование нормальных структур (примеры)

Последствия нарушений межклеточных взаимодействий (примеры)

Клеточные перемещения

Избирательное размножение клеток

Избирательная клеточная гибель

Клеточная адгезия

Клеточные сгущения

Перемещение клеток при гаструляции, при образовании нервной трубки, при перемещении первичных половых клеток.

Закладка зачатков отдельных органов.

Разделение пальцев, гибель эпителиальных клеток при слиянии небных зачатков, носовых отростков.

Гибель нейроэпителиальных клеток при образовании нервной трубки.

Образование нервной трубки из нервной пластинки, слияние зачатков структур лица (небных отростков, носовых отростков между собой и с верхнечелюстными отростками).

Образование зачатков конечностей.

Нарушение образования гаструлы, нервной трубки; нарушение структуры, изменение количества или отсутствия гонад.

Отсутствие органа или его доли.

Синдактилия, расщелина твердого неба, расщелины твердой губы, лица, спинномозговые грыжи.

Спинномозговая грыжа, расщелины твердого неба, верхней губы, лица.

Отсутствие конечностей, дополнительные конечности.

Рис. 7. Развитие неба у зародыша свиньи [Карлсон Б., 1983].

а-г - этапы развития вторичного неба (препарат крыши ротовой полости, х 5); д, е (поперечные срезы, иллюстрирующие до и после опускания языка, 1 - верхняя губа; 2 - срединный небный отросток; 3 - латеральный небный отросток; 4 - носовая перегородка; 5 - язык; 6 - шов неба.

Работа 7. Эмбриональная индукция.

Разберите рис. 8, а, б, зарисуйте и обозначьте основные структуры.

Рис. 8. Эмбриональная индукция почки и зуба у млекопитающих, а - развитие почек: 1 - предпочка. 2 - мезонефральный канал, 3 - мезенхима первичной почки, 4 - первичная почка, 5 - вырост мочеточника вторичной почки, 6 - мезенхима вторичной почки, 7 - зачаток вторичной почки, → ин­дукция; б - ранние стадии развития зуба: I - десна нижней челюсти (вид свер­ху): II - поперечный срез десны; III-VI - стадии развития зуба: 1 - гребень десны, 2 - зубная пластинка, 3 - мезодермальные зубные сосочки, 4 - зача­ток эмалевого органа, 5 - амелобласты, 6 - зачаток эмали, 7 – одонтобласты, 8 - зачаток дентина, 9 - зачаток пульпы, 10 - эмаль, 11 - дентин; → индук­ция; ↔ − взаимная индукция.

Лечебный факультет :

а. Эмбриональная индукция, обусловливающая развитие почек у млекопитающих (рис. 8, а).

Мезонефральный (вольфов) канал индуцирует образование первичной почки. Вырост мочеточника из мезонефрального канала индуцирует образование вторичной почки, которая в свою очередь поддерживает рост мочеточника. Метанефрогенная мезенхима индуцирует ветвление мочеточника. Эпителий разветвлений мочеточника индуцирует мезенхиму к образованию почечных канальцев.

Стоматологический факультет

б. Эмбриональная индукция, обусловливающая развитие зуба у млекопитающих (рис. 8, б) [Дьюкар Э., 1978].

Первый зачаток зубов - зубная пластинка, утолщенная по­лоска эктодермы по гребню десны, развивается независимо от мезодермы. Под зубной пластинкой появляется ряд мезодермальных зубных сосочков, которые индуцируют образование из эктодермы зачатков эмалевого органа (при удалении мезодермальных сосочков зачатки эмалевого органа не образуются). Взаимная индукция между эмалевым органом и мезодермальным зубным сосочком приводит к формированию клеток, об­разующих эмаль, дентин и пульпу. На следующей стадии дифференцировки возникающие эмаль и дентин оказывают взаимное влияние на развитие друг друга.

Работа 8. Взаимосвязь нервной системы и иннервируемого ею органа в онтогенезе.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, при­чем эти структуры взаимно стимулируют развитие друг друга. Отсутствие периферических нервов или их повреждение (на­пример, лекарственными препаратами, токсинами токсоплазмы и др.) вызывают нарушение формирования иннервируемых ими структур. Так, например, в Европе родились несколько со­тен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые трав­мы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII черепных нервов). Способствуют восстановлению поврежденных струк­тур головного и спинного мозга пассивные движения (для это­го созданы специальные аппараты), массаж и физиотерапевти­ческая стимуляция иннервируемых органов.

При нейрофиброматозе (аутосомно-доминантный тип на­следования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той сто­роне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие струк­тур, формирующих лицо).

Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы дея­тельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.

Разберите схемы экспериментов по изучению взаимосвязи нервных центров и иннервируемых органов.

Удаление нерва на левой стороне зародыша аксолотля при­вело к отсутствию конечности на оперированной стороне тела. Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, тали­домид и др.) (рис. 9, а).

Удаление зачатка конечности у зародыша аксолотля приво­дит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне (рис. 9, б).

Рис. 9. Взаимосвязь нервных центров и иннервируемых органов [Дьюкар Э., 1978, с изменениями].

а - влияние спинномозговых нервов на развитие конечности: 1 - спинной мозг, 2 - спинномозговой нерв, иннервирующий конечность, 3 - спинномоз­говой ганглий, 4 - конечность; б - влияние зачатка конечности на развитие сегментов спинного мозга (поперечный сред зародыша аксолотля с удаленным зачатком конечности: 1 - спинномозговой ганглий, 2 - спинномозговой нерв, 3 - дорсальные рога серого вещества спинного мозга, 4 - вентральные рога се­рого вещества спинного мозга.

Работа 9. Гормональная регуляция онтогенеза у плацентар­ных млекопитающих.

Изучите по табл. 3 влияния гормонов на процессы разви­тия организма.

Таблица 3

Источник образования

гормона

Гормоны

Основные эффекты

Гипоталамус

Гипофиз

Эпифиз (шишковид­ное тело)

Щитовид­ная железа

Поджелудоч­ная железа

Надпочеч­ники

Яичники:

фолликулы

желтое тело

Плацента

Семенники

Тимус

Либерины

Статины

Гонадолиберин

Соматропный гормон

Тиреотропный гормон(ы)

Адренокортикотропный гормон (АКТГ)

Гонадотропины:

а) фолликулостимулирующий гормон (ФСГ)

б) лютеинизирующий гормон

(ЛГ)

в) пролактин (лютеотропный гормон - ЛТГ)

Мелатонин (син­тезируется но­чью)

Серотонин (син­тезируется днем)

Тироксин

Инсулин

Кортизол

Эстрогены

Прогестерон

Прогестерон

Хорионический соматомаммотропин (плацен­тарный гормон роста)

Тестостерон

Фактор, ингибирующий парамезонефральные протоки

Дигидротестостерон

Тимозин

В раннем эмбриогенезе гормоны ги­поталамуса влияют на дифференцировку и миграцию нейронов.

В позднем эмбриогенезе и постна­тальном периоде - регулируют разви­тие опосредованно путем изменения синтеза гормонов гипофиза.

Усиливают синтез гормонов аденогипофиза.

Тормозят синтез гормонов аденогипофиза.

Определяет момент наступления по­ловой зрелости и характер полового поведения.

Усиливает пролиферацию клеток и синтез белка. В постнатальном перио­де регулирует рост.

Ускоряет рост и дифференцировку клеток щитовидной железы.

Стимулирует рост надпочечников и продукцию стероидов.

Усиливают пролиферацию стволовых клеток, рост фолликулов в яичниках, стимулируют рост семенных канальцев и семенников, образование поло­вых гормонов в гонадах. Инициируют гаметогенез.

Поддерживает желтое тело беремен­ности в активном состоянии. Стиму­лирует рост молочной железы и секрецию молока.

Регулирует суточные биологические ритмы, половое созревание и репро­дуктивные функции.

Чувствительные к серотонину нейро­ны регулируют поведение, сон, про­цессы терморегуляции.

Регуляция двигательной активности пищеварительного тракта.

Повышает интенсивность обмена ве­ществ и синтеза белка; регулирует развитие головного мозга, рост и про­порции тела.

Необходим для нормального развития производных кожи. Инициирует дифференцировку молочной железы. Усиливает пролиферацию.

Необходим для нормального развития многих органов на поздних стадиях он­тогенеза. Стимулирует поздние стадии дифференцировки молочных желез.

Стимулируют развитие женских вто­ричных половых признаков; способст­вуют пролиферации и секреции в эпи­телиальных клетках матки; начальных изменений в молочных железах.

Сохранение беременности; дальнейшая дифференцировка молочных желез.

Дальнейшая пролиферация эпителия матки и сохранение беременности; дальнейшая дифференцировка мо­лочных желез.

Действие, сходное с действием гормо­на роста и пролактина гипофиза.

Определяет развитие мужских поло­вых путей, семенников, вторичных половых признаков и гормональной функции гипоталамуса (в эмбриогенезе), ингибирует развитие молочных желез, регулирует рост тела.

Регрессия парамезонефральных мюллеровых протоков.

Развитие предстательной железы, пениса, мошонки.

Пролифирация Т-лимфоцитов.

Работа 10.

Изучите таблицу 4, разберите и зарисуйте схему 1, приведите примеры прямого и опосредованного повреждения зародыша.

Таблица 4

Факторы

Основные механизмы нарушений

Эмбрио - и фетопатии

I. Неполноценное питание матери

1. Голодание и недоедание

2. Дефицит белка

3. Дефицит вита­минов (часто без гиповитаминоза у матери):

витамина В2

витамина С

витамина Е

фолиевая кислота

4. Избыток витаминов:

витамина А

витамина С

II. Заболевания матери

1. Ревматические пороки сердца

2. Ненаследственные врожден-ные пороки сердца

3. Гипертониче­ская болезнь

4. Анемия

5. Сахарный диабет

6. Тиреотоксикоз

7.Патология надпочечников

8. Иммунологи­ческий конфликт (по резус-факто­ру и системе АВ0; наиболее часто несовмес­тимы: 0 - А, 0 - В, А - В, В - А, комбинации групп крови ма­тери и плода)

III. Внутриутроб­ные инфекции

1.Вирус краснухи

2. Вирус гриппа

3. Вирус полиомиелита

4. Вирусный ге­патит (болезнь Боткина)

Токсоплазмоз

IV. Ионизирующая радиация

V. Влияние хи­мических соеди­нений, в том чис­ле лекарственных веществ (более 600 соединений)

Никотин

Алкоголь

Нарушение трофики за­родыша.

Нарушение метаболизма у зародыша.

Нарушение окислитель­но-восстановительных процессов в эпителии.

Нарушение роста, обра­зование ферментов био­логического окисления.

Нарушение процессов окисления, образования соединительной ткани, биосинтеза.

Нарушение окисления жиров, приводящее к по­явлению токсичных про­дуктов.

Нарушение синтеза ряда аминокислот, метальных групп.

Нарушение роста, окислительно-восстановительных процессов.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плацен­ты.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плаценты.

Гипоксия, нарушение маточно-плацентарного кровообращения, морфофункциональные на­рушения плаценты.

Нарушается транспорт кислорода к плоду, де­фицит железа, морфоло­гические изменения пла­центы.

Гормональные сдвиги, гипергликемия и кетоацидоз, ухудшение маточно-плацентарного кровообращения, пато­логические изменения в плаценте.

Повышенное выделение гормонов щитовидной железы.

Недостаток или избыток гормонов надпочечников.

Проникают через пла­центу резус-антитела. Проникновение через плаценту неполных изоиммунных антител А и В, которые вызывают ге­молиз эритроцитов пло­да. Выделившийся не­прямой билирубин явля­ется сильным тканевым токсином.

Инфицирование зароды­ша, особенно в первые три месяца развития.

Инфицирование плода, интоксикация организма матери, гипертермия, нарушение маточно-плацентарного кровообра­щения.

Вирус переходит через плаценту, вызывая забо­левание.

Патологические изменения материнского организма, изменения в плаценте.

Поражение зародыша проникающими радиацией и токсичными продуктами поврежденных тканей.

Непосредственное дейст­вие на зародыш. Наруше­ние структуры и функ­ции плаценты. Патологи­ческие изменения в мате­ринском организме.

Прямое токсическое действие на плод, пла­центу и организм матери.

Повреждение гамет, ге­неративные мутации. Прямое токсическое действие.

Гипотрофия плода, различные аномалии развития, преимущественно центральной нервной системы, мертворождение, ослабленные, склонные к заболевани­ям дети.

Дефекты органов зрения и мочеполовой системы.

Деформация конечно­стей, расщепление твер­дого неба, гидронефроз, гидроцефалия, аномалии сердца и др.

Возможны гибель заро­дыша, выкидыш.

Аномалии мозга, глаз, скелета.

Пороки сердца и сосудов.

Расщепление твердого неба, анэнцефалия.

Увеличивается вероят­ность выкидыша.

Гипотрофия плода, функциональная незре­лость, аномалии органов и систем, преимущест­венно сердечно-сосуди­стой. У детей часто встречаются инфекционно-аллергические за­болевания и нарушения нервной системы.

Гипотрофия плода. По­роки развития, в основ­ном сердца и сосудов.

Гипотрофия плода, на­рушения сердечно-сосу­дистой системы. Повы­шенная заболеваемость у детей.

Гибель плода, наруше­ние центральной нерв­ной системы, анемия у детей.

Гибель плода, недоно­шенные, незрелые с повышенной массой плоды, функциональная не­зрелость поджелудочной железы, легких, реже из­менения щитовидной железы, почек. Встреча­ются анэнцефалия, гид­ронефроз и другие нарушения центральной нервной системы

Нарушение формирова­ния центральной нерв­ной системы, щитовид­ной железы и, меньше, других желез внутренней секреции. Реже аномалии сердечно-сосудистой системы, костно-мышечной, половой и др.

Функциональная неполно­ценность надпочечников.

Гемолитическая болезнь плода и новорожденного.

Аномалии сердца, мозга, органов слуха, зрения и др.

Аномалии половых орга­нов, катаракта, «заячья губа».

Врожденный полиомие­лит.

Уродства на разных стади­ях развития. Врожденный вирусный гепатит, ослож­ненный циррозом печени; задержка развития.

Уродства головного моз­га, глаз, конечностей, «волчья пасть», пороки сердца, заболевания эн­докринных органов.

Врожденная лучевая бо­лезнь. Наиболее часто паралич нервной системы. Могут быть анома­лии глаз, сосудов, легких, печени, мочеполовых ор­ганов, конечностей.

Различные пороки раз­вития, зависящие от ве­щества, дозы и срока по­ступления.

Гипотрофия, склонность детей к респираторным заболеваниям.

Умственная отсталость, психические заболева­ния, пороки сердца, эпи­лепсия, алкогольное по­ражение плода.

Схема 1. Воздействие вредных факторов среды на зародыш.

Работа 11. Критические периоды в онтогенезе человека.

Изучите и перепишите табл. 5.

Таблица 5

Периоды онтогенеза человека

Критические периоды

Возможные нарушения развития

Предымплантаци­онный и имплантационный

Период гисто - и органогенеза и начала плацентации

Перинатальный пе­риод (роды)

Период новорожденности

Подростковый (пу­бертатный)

Климактерический

Для всего зародыша

Для разных органов и систем не совпадают по времени

Для всего организма и отдельных органов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Гибель зародыша

Двойниковые уродства

Наследственные болезни

Пороки и аномалии развития различных органов и систем, гибель зародыша

Травмы, детский церебральный паралич, слабоумие, гибель

Высокая вероятность перегревания, переохлаждения, патологии различных организмов и систем, неспецифических инфекций и гибели

Повышен риск проявления ненаследственных заболеваний, нарушения обмена веществ, подростковых нарушений поведе­ния, психической ранимо­сти, агрессивности . Увели­чивается смертность

Возрастает риск развития соматических и психиче­ских болезней, увеличива­ется частота возникнове­ния опухолей. Повышается смертность

Работа 12. Классификация и механизмы образования пороков развития.

Изучите и перепишите информацию по классификации механизмов образования пороков развития.

I. По этиологическому признаку.

1. Наследственные: а) генеративные мутации (наследственные болезни); б) мутации в зиготе и бластомерах (наследственные болезни, мозаицизм).

2. Ненаследственные: а) нарушение реализации генетической информации (фенокопии); б) нарушение взаимодействия клеток и тканей; пороки развития органов и тканей (тератомы, кисты); в) соматические мутации (врожденные опухоли.)

3. Мультифакториальные.

II. По периоду онтогенеза.

1. Гаметопатии: а) наследственные; б) ненаследственные (перезревание гамет).

2. Бластопатии до 15-го дня; а) наследственные болезни (мозаицизм - зародыш состоит из клеток с нормальным и атипичным набором хромосом); б) не наследственные (двойниковые уродства, циклопия, сиреномелия).

3. Эмбриопатии до конца 8-й недели: большинство поро­ков развития, пороки, обусловленные действием тератогенов.

4. Фенопатии от 9 нед. до родов. Пороки этой группы встре­чаются редко: остатки эмбриональных структур (персистирование); сохранение первоначального расположения органов, например крипторхизм; недоразвитие отдель­ных органов или всего плода, отклонения в развитии органов.

5. Пороки, возникающие в постнатальный период (возника­ют реже, чем вышеуказанные пороки, обусловлены трав­мами или заболеваниями).

Контроль итогового уровня знаний:

Тестовые задания

1. Выберите один правильный ответ.

УЧЕНИЕ О ЗАРОДЫШЕВОМ РАЗВИТИИ ОРГАНИЗМОВ ПУТЕМ ПОСЛЕДОВАТЕЛЬНЫХ ОБРАЗОВАНИЙ НО­ВЫХ СТРУКТУР НАЗЫВАЕТСЯ:

1. Преформизм.

2. Эпигенез.

3. Трансформизм.

4. Витализм.

2. Выберите один правильный ответ.

ГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ОНТОГЕНЕЗА У ПОЗВО­НОЧНЫХ ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ:

1. Уменьшения количества генов в процессе развития.

2. Репрессии генов.

3. Дерепрессии генов.

4. Дерепрессии и репрессии генов.

3. Выберите один правильный ответ.

ПРИ КЛОНИРОВАНИИ РЕГУЛИРУЮТ РАЗВИТИЕ ЗА­РОДЫША ГЕНЫ:

1. Сперматозоида.

2. Яйцеклетки.

3. Сперматозоида и яйцеклетки.

4. Соматической клетки.

4. Выберите один правильный ответ.

ОДНОЯЙЦОВЫЕ БЛИЗНЕЦЫ ОБРАЗУЮТСЯ В РЕЗУЛЬТАТЕ;

1. Разъединения клеток зародыша на стадии гаструлы.

2. Разъединения клеток зародыша на стадии дифференцировки зародышевых листков.

3. Полного расхождения бластомеров.

4. Неполного расхождения бластомеров.

5. Выберите несколько правильных ответов.

ПРИ ОБРАЗОВАНИИ НЕРВНОЙ ТРУБКИ ПРОИСХОДИТ:

1. Избирательное размножение клеток.

2. Сгущение мезодермальных клеток.

3. Избирательная гибель клеток.

4. Адгезия клеток.

6. Выберите один правильный ответ.

ЭМБРИОНАЛЬНАЯ ИНДУКЦИЯ НАЧИНАЕТ РЕГУЛИ­РОВАТЬ РАЗВИТИЕ ПОЗВОНОЧНЫХ В ПЕРИОД:

1. Дробления.

2. Ранней гаструляции.

3. Нейруляции.

4. Органогенеза.

7. Выберите несколько правильных ответов.

СТАДИЯ ЗАВИСИМОЙ ДИФФЕРЕНЦИРОВКИ КЛЕТОК ХАРАКТЕРИЗУЕТСЯ:

1. Повышением чувствительности к действию индукторов.

2. Понижением чувствительности к действию индукторов.

3. Отсутствием способности к трансдифференцировке.

4. Способностью к трансдифференцировке.

8. Выберите один правильный ответ.

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ РАЗВИТИЯ У МЛЕКО­ПИТАЮЩИХ НАЧИНАЕТСЯ В ПЕРИОД:

1. Гаструляции.

2. Дробления.

3. Гисто - и органогенеза.

4. Плодный.

9. Выберите несколько правильных ответов.

НАИБОЛЬШАЯ ЧУВСТВИТЕЛЬНОСТЬ ОРГАНОВ ЗАРО­ДЫША К ДЕЙСТВИЮ ТЕРАТОГЕНА В ПЕРИОДЫ:

1. Закладки зачатков органов.

2. Закладки новых структур органа.

3. Дифференцировки клеток органа.

4. Роста органа.

10. Установите соответствие.

ПОРОКИ РАЗВИТИЯ: МЕХАНИЗМЫ ВОЗНИКНО ВЕНИЯ:

1. Наследственные. а) генеративные мутации;

2. Ненаследственные. б) мутации в бластомерах;

в) мутации в клетках зачатков органов;

г) нарушение функций генов;

д) нарушение закладки органов.

Термины:

Адгезия, биологическая смерть, взрослое состояние, гуморальной регуляции онтогенеза, дефинитивные структуры органов, д орепродуктивный период, з ародыш, зародышевые оболочки, критический период развития, критические периоды эмбриогенеза , л ичиночное развитие, развитие половозрелого организма, р епродуктивный период, п острепродуктивный период, половое созревание, прямое развитие, непрямое развитие (р азвитие с метаморфозом), сиреномелия, старение, циклопия, ю венальный период, эмбриональной индукции.

Основная литература

1. Биология / Под ред. . - М.: Высшая школа, 2001. - Кн. 1. - С. 150, 280-282, 294-295, 297-298, 317-368, 372, 409-418.

2. Пехов и общая генетика. - М.: Изд-во РУДН, 1993. - С. 166, 201-219.

Дополнительная литература

1. , Белоусов индивидуального развития жи­вотных. - М.: Высшая школа, 1983.

2. Гилберт С. Биология развитая. - М.: Мир, 19^9,3, т. 1; 1994, т. 2; 1995, т. 3.

Онтогенезом называется индивидуальное развитие особи (Э. Геккель, 1866).

Главный вопрос биологии: каким образом из одного яйца возникает множество разных типов клеток! А из одного генотипа – несколько тысяч разных фенотипов? У млекопитающих из одной зиготы формируются более 1000 разных типов клеток.

Развитие – непрерывный процесс изменения, обычно сопровождающийся увеличением веса, размеров, изменением функций. Почти всегда предполагает рост, который может быть связан с увеличением размера клеток или их количества. Вес яйцеклетки 1*10х(-5)г, сперматозоида – 5х10(-9)г. У новорожденного – 3200 г.

Одним увеличением массы невозможно обеспечить формирование признаков, характерных для организма.

Этапы развития.

Детерминация клеток

Дифференцировка клеток

Образование новой формы, морфогенез.

Нарушение любого этапа может привести к возникновению пороков развития и уродств.

Детерминация - ограничение, определение – прогрессивное ограничение онтогенетических возможностей эмбриональных клеток. Это означает, что на этапе детерминации клетки по своим морфологическим признакам отличаются от эмбриональных клеток, но функции выполняют еще клеток эмбриональных. Т.е. детерминированные клетки еще не способны выполнять специальные функции. У млекопитающих детерминированные клетки появляются на стадии восьми бластомеров. Химерные, аллоферные организмы. В качестве объекта исследования мыши. Зародыши мышей на стадии 8 бластомеров с помощью фермента проназы извлекают и разбивают на отдельные бластомеры, производят смешивание бластомеров от разных животных в пробирке, а затем вшивают в матку. В результате получаются нормальные животные, но окраска частей различна, т.к. исходные формы были разных цветов. Если подобную операцию проводить на более поздних этапах эмбриогенеза – гибель животных, что доказывает детерминацию клеток на данном этапе.

Процесс детерминации находится под генетическим контролем. Это ступенчатый, многоэтапный процесс, изученный пока недостаточно хорошо. По-видимому, в основе детерминации – активация тех или иных генов и синтез разных и-РНК и, возможно, белков.

Детерминация может нарушаться, что приводит к мутациям. Классический пример – развитие у мутантов дрозофилы вместо усиков ротового аппарата – конечности. Формирование конечностей в нехарактерных местах.

Дифференцировка . Детерминированные клетки постепенно вступают на путь развития (неспециализированные эмбриональные клетки превращаются в дифференцированные клетки организма). Дифференцированные клетки в отличие от детерминированных обладают специальными морфологическими и функциональными организациями. В них происходят строго определенные биохимические реакции и синтез специальных белков.

Клети печени – альбумин.

Клетки эпидермиса кожи – кератин.

Мышцы – актин, миозин, миелин, миоглобин.

Молочные железы – казеин, лактоглобулин.

Щитовидная железа – тироглобулин.

Слизистая оболочка желудка – пепсин.

Поджелудочная железа – трипсин, химотрипсин, амилаза, инсулин.

Как правило, дифференциация происходит в эмбриональном периоде и приводит к необратимым изменениям полипотентных клеток эмбриона.

Синтез специальных белков начинается на очень ранних стадиях развития. Касательно стадии дробления: бластомеры отличаются друг от друга цитоплазмой. В цитоплазме различных бластомеров имеются разные вещества. Ядра всех бластомеров несут одну и ту же генетическую информацию, т.к. имеют одинаковое количество ДНК и идентичный порядок расположения пар нуклеотидов. Вопрос о специализации до сих пор не нашел ответа.

1939 год Томас Морган выдвинул гипотезу: « дифференцировка клеток связана с активностью разных генов одного и того же генома». В настоящее время известно, что в дифференцированных клетках работает около 10% генов, а остальные неактивны. В силу этого в разных типах специализированных клеток функционируют свои определенные гены. Специальными опытами по пересадки ядер из клеток кишечника головастика в безъядерную яйцеклетку было доказано, что в дифференцированных клетках сохраняется генетический материал и прекращение функционирования определенных генов обратимо. Из яйца лягушки удаляли ядро, брали ядро из клетки кишечника головастика. Развитие не происходило, иногда эмбриогенез происходил нормально. Строение взрослой лягушки полностью определялось ядром.

На функционирование генов в процессе развития многоклеточного организма оказывают влияние сложные и непрерывные взаимодействия ядра и цитоплазмы и межклеточные взаимодействия.

Регуляция дифференцировки происходит на уровне транскрипции и на уроне трансляции.

Уровни регуляции дифференцировки клеток .


  1. На уровне транскрипции.
- система оперона

Участие белков – гистонов, которые образуют комплекс с ДНК.

Участки ДНК, покрытые гистоном, неспособны к транскрипции, а участки без гистоновых белков транскрибируются. Таким образом, белки участвуют в контроле над считываемыми генами.

Гипотеза дифференциальной активности генов: « Предположение о том, что в разных генах дифференцированных клеток репрессированы (закрыты для считывания) разные участки ДНК и поэтому синтезируются разные виды м-РНК».


  1. На уровне трансляции.
На ранних стадиях эмбрионального развития весь белковый синтез обеспечивается матрицами , созданными в яйцеклетке до оплодотворения под управлением ее генома. Синтез и-РНК не происходит, меняется характер синтеза белка. У разных животных синтез включается по-разному. У амфибий синтез и-РНК после 10 деления, синтез т-РНК на стадии бластулы. У человека синтез и-РНК после 2го деления. Не все молекулы и-РНК, находящиеся в яйцеклетке одновременно используются для синтеза полипептидов, белков. Часть из них некоторое время молчит.

Известно, что во время развития организма закладка органов происходит одновременно.

Гетерохрония – закономерность, предполагающая неодновременное развитие.

Процесс дифференцировки клеток связан с депрессией определенных клеток. В процессе гаструляции депрессия генов зависит от влияния неодинаковой цитоплазмы в эмбриональных клетках. В органогенезе основное значение у межклеточных взаимодействий. Позже регуляция активности генов осуществляется через гормональные связи.

В зародыше разные участки влияют друг на друга.

Ели разделить зародыш тритона на стадии бластулы пополам, то из каждой половины развивается нормальный тритон. Если то же самое проделать после начала гаструляции, из одной половины формируется нормальный организм, а другая половина дегенерирует. Нормальный зародыш образуется из той половины, где располагались дорсальная губа бластопора. Это доказывает, что


  1. клетки дорсальной губы обладают способностью организовывать программу развития зародыша

  2. никакие другие клетки не способны это делать.
Спинная губа индуцирует в эктодерме образование головного и спинного мозга. Сама она дифференцируется в спинную хорду и сомиты. В дальнейшем многие соседние ткани обмениваются индукционными сигналами, что приводит к образованию новых тканей и органов. Функцию индукционного сигнала выполняют гормоны местного действия, которые стимулируют рост. Дифференцировку, служат факторами хемотаксиса, тормозят рост. Каждая клетка продуцирует гормон местного действия – кейлон, который тормозит вступление клеток в синтетическую фазу митоза и временно тормозит митотическую активность клеток этой ткани и вместе с антикейлоном направляет клетки по пути дифференцировки.

Морфогенез – образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве.

Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран.

Клеточная мембрана играет роль в осуществлении

Клеточных контактов

Адгезии

Агрегации.

Межклеточный контакт – подвижные клетки приходят в контакт и расходятся, не теряя подвижности.

Адгезия – пришедшие в контакт клетки длительное время прижаты друг к другу.

Агрегация – между адгезированными клетками возникают специальные соединительнотканные или сосудистые структуры, т.е. происходит формирование простых клеточных агрегатов тканей или органов.

Для формирования органа необходимо присутствие в определенном количестве всех клеток , обладающих общим органным свойством.

Эксперимент с дезагрегированными клетками амфибий. Взяты 3 ткани – эпидермис нервной пластинки, участок нервных валиков, клетки эктодермы кишечника. Клетки дезагрегированы случайным образом и смешаны. Клетки начинают постепенно рассортировываться. Причем процесс сортировки продолжается до тех пор, пока не образуются 3 ткани: сверху слой эпидермальной ткани, затем нервная трубка и внизу - скопление эндодермальных клеток. Это явление получило название сегрегации клеток – избирательной сортировки.

Смешивали клетки глазных зачатков и хряща. Раковые клетки не способны к сегрегации и неотделимы от нормальных. Остальные клетки подвержены сегрегации.

Критические периоды развития.

Критический период – период, который связан с изменением обмена веществ (переключение генома).

В онтогенезе человека выделяют:

1. развитие половых клеток

2. оплодотворение

3. имплантация (7-8 неделя)

4. развитие осевых органов и формирование плаценты(3-8 недели)

5. стадия роста головного мозга (15-20 недели).

6. формирование основных функциональных систем организма и дифференцировка полового аппарата(10-14 недели).

7. рождение(0-10 дней)

8. период грудного возраста – максимальная интенсивность роста, функционирование системы энергопродукции и др.

9. дошкольный (6-9 лет)

10. пубертатный - для девочек 12. для мальчиков 13 лет.

11. окончание репродуктивного периода, у женщин – 55, у мужчин – 60 лет.

В критические периоды развития проявляются мутации, поэтому надо быть внимательным к этим периодам.

КЛЕТОЧНЫЕ МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ ВРОЖДЕННЫХ ПОРОКОВ РАЗВИТИЯ.
Формирование врожденных пороков - результат отклонений от нормального развития особи. Такое развитие происходит на протяжении длительного отрезка времени и осуществляется благодаря цепи последовательных и связанных друг с другом событий. Единый процесс индивидуального развития можно представить основными этапами:

гаметогенез,

оплодотворение,

эмбриональный морфогенез,

постэмбриональное развитие.

Основным содержанием гаметогенеза (образования половых клеток), по образному выражению С. Raven, является «кодирование морфогенетической информации», в процессе реализации которой из одноклеточного зародыша (зиготы) развивается многоклеточный организм. Морфогенетическую информацию несут ядерные гены, локализованные в хромосомах гамет (генотипическая информация), и цитоплазматические факторы -белки цитоплазмы (цитоплазматическая информация). Оба вида информации образуют единую ядерно-цитоплазматическую систему, обусловливающую развитие организма.

Эмбриональный морфогенез , т.е. формирование морфологических структур эмбриона, включает эмбриональный гистогенез - возникновение специализированных тканей из малодифференцированных клеток эмбрионального зачатка, и органогенез - развитие органов и систем организма. Эмбриональный морфогенез осуществляется при взаимодействии генома зародыша и организма матери, в особенности ее гормональной и иммунной систем, и связан с процессами размножения, роста, миграции, дифференциации и отмирания клеток и формообразованием органов и тканей.

Эти процессы контролируются сложным взаимодействием генетических, эпигеномиых и внешних факторов, определяющим в конечном итоге временную и пространственную последовательность экспрессии генов и тем самым цитодифференцировку и морфогенез. Включение одних н выключение других генов происходит на протяжении всего эмбриогенеза. Соответственно этим процессам изменяются временные структуры зародыша , которых в течение эмбриогенеза насчитываются сотни, и формируются они иа внутриклеточном, клеточном, экстраклеточном, тканевом, межтканевом, органном и межорганном уровнях. Нарушение любого из вышеперечисленных механизмов в дискретном процессе эмбриогенеза влечет за собой отклонение от нормального развития и, следовательно, может реализоваться во врожденный порок. На внутриклеточном уровне к «пусковым» механизмам нарушения развития относятся изменения молекулярных процессов, вовлеченных в репликацию изменения путей биосинтеза и белкового питания зародышей, нарушения энергетического обмена и других интимных механизмов, определяющих жизнедеятельность клеток

К основным клеточным механизмам тератогенеза относятся изменения размножения, миграции и дифференцировки.

Нарушения размножения в основном связаны со снижением митотической активности клеток и проявляются торможением прелиферативной активности клеток вплоть до полной ее остановки. Результатом таких изменений могут быть гипоплазия или аплазия любого органа или части его, а также нарушение слияния друг с другом отдельных эмбриональных структур, формирующих орган, поскольку слияние происходит в строго определенные периоды.

В результате низкой пролиферативной активности контакт между эмбриональными структурами нарушается (опаздывает). Такой механизм, очевидно, лежит в основе многих дизрафий (некоторые расщелины губы, неба, спинномозговые грыжи). Таким образом, любой фактор (генетический или средовый), способный снижать митотическую активность в ходе эмбриогенеза (например, ингибиторы синтеза ДНК, хлоридин, дефицит кислорода в клетках и тканях, вирус краснухи, числовые аберрации хромосом), может привести к развитию врожденного порока. В результате нарушения миграции клеток могут развиться гетсротопии, агенезии и другие пороки. В эксперименте, проведенном на крысах с введением им избыточного количества витамина А, показано, что тяжелые симметричные расщелины лица образуются в результате нарушения миграции клеток пейроэктодермального гребня в эмбриональные верхнечелюстные отростки. При большинстве хромосомных болезней в белом веществе головного мозга находят гетеротопию нейронов, обусловленную нарушением процессов миграции. С нарушением миграции связывают происхождение синдромов Робинова и Ди-Джорджи.

Дифференциация, т. е. образование разнородных клеток, тканей и органов из однородного эмбрионального зачатка, последовательно происходит в течение всего эмбриогенеза. Такая дифференциация может прекратиться на любом этапе развития, что повлечет за собой рост бесформенной массы недифференцированных клеток (как это наблюдается у ранних аборту-сов), агенезию органа или системы органов , их морфологическую и функциональную незрелость, а также персистироваиие. эмбриональных структур. Ключевые позиции в специализации клеток занимает дифференциальная активность генов в результате которой в разные фазы эмбриогенеза синтезируются специфические для каждой стадии изоферменты, с которыми в основном и связана индукция клеток и тканей в определенном направлении. В этом процессе участвуют как минимум два объекта - донор фермента или гормона и реципиент их. Нарушение развития может возникать как при недостаточной функции или отсутствии генов и клеток-продуцентов этих веществ, так и при изменениях в клетках-мишенях. Например, отсутствие активности к андрогену в клетках-мишенях зачатков мужских половых органов, обусловленной рецепторами, способными «узнавать» соответствующий гормон, приводит к различным порокам этих органов. Отсутствие тестикуляриых гормонов у плодов с генетическим мужским полом приводит к развитию половых органов по женскому типу.

К экстраклеточным факторам регуляции эмбриогенеза относятся компоненты экстраклеточного матрикса - гликозамино-гликаны, протеогликаны, коллагеновые белки, фиброиектин, участвующие во всех процессах органогенеза. Нарушения нормального функционирования компонентов экстраклеточного матрикса могут быть обусловлены генетическими и тератогенными факторами. Например, такие химические тератогены, как салицилаты и аминоникотин, талидомид и дилантин, соответственно нарушающие синтез и процессинг протеогликанов и коллагена, обусловливают ряд пороков конечностей, сердца, глаз, неба.

К основным механизмам тератогенеза на тканевом уровне относятся гибель отдельных клеточных масс, замедление распада и рассасывания клеток, отмираклгих в ходе нормального эмбриогенеза, а также нарушение адгезии тканей. Физиологическая гибель клеток происходит под влиянием лизосомальных ферментов во многих органах в процессе их окончательного формирования. Такая «запрограммированная» (первичная) гибель клеток наблюдается при слиянии первичных анатомических структур (например, небных отростков, мышечно-эндокардиальных выступов), реканализации кишечной трубки, открытии естественных отверстий или, например, при регрессии межпальцевых перепонок при формировании пальцев. В ряде случаев наблюдается избыточный распад клеток , что может привести к некоторым дисмелиям, дефектам перегородок сердца, свищам. Вторичная гибель клеток и тканей связана с циркуляторными расстройствами (тромбоз сосудов, их сдавление, кровоизлияния) или непосредственным цитолитическим действием повреждающего фактора, например вируса краснухи.

Задержка физиологического распада клеток или замедление рассасывания их вследствие недостаточной макрофагальной реакции или нарушений функций компонентов экстраклеточного матрикса могут приводить к синдактилии, атрезиям, смещению устья аорты, сочетающемуся с дефектом межжелудочковой перегородки. Сходной по механизму является замедленная инволюция некоторых эмбриональных структур, например удлинение времени функционирования апикального эктодермального гребня, приводящая к развитию преаксиальной полидактилии.

Нарушение механизма адгезии, т.е. процессов «склеивания», «удержания» и «срастания» эмбриональных структур, может привести к развитию порока даже в тех случаях, когда пролиферация тканей и рост эмбриональных структур органов были нормальными. Нарушение механизма адгезии как и недостаточно активная пролиферация лежат в основе многих пороков типа дизрафий (например, пороки, связанные с незакрытием нервной трубки).

Врожденные пороки после окончания основного органогенеза - это главным образом остановка в развитии (например, гипоплазии), задержка перемещения органа на место окончательной его локализации (тазовая почка, крипторхизм), вторичные изменения, связанные со сдавлением (например, деформация конечностей при маловодий, амниотические перетяжки) .

Прогрессивную роль в понимании патогенеза н в установлении причин врожденных пороков сыграло учение С. Stockard и П. Г. Светлова (1937, 1960) о критических периодах, а также учение Е. Schwalbe о тератогенетических терминационных периодах. Эти периоды часто отождествляются, что неверно. Под термином «критические периоды», введенным в научную литературу в 1897 г. П. И. Броуновым, понимают периоды в эмбриогенезе, отличающиеся повышенной чувствительностью зародыша к повреждающему действию факторов внешней среды. У млекопитающих критические периоды совпадают с периодами имплантации и плацентации. Первый критический период у человека приходится на конец 1 - й - начало 2-й недели беременности. Воздействие повреждающего фактора в это время в основном приводит к гибели зародыша. Второй период охватывает 3-6-ю недели, когда аналогичный фактор чаше индуцирует порок развития.

Критические периоды совпадают с периодами наиболее интенсивного формирования органов и связаны в основном с периодичностью проявлений морфологической активности ядер.

Под термином тератогенетический терминационный период понимают предельный срок (от лат. terminus - предел, граница), в течение которого повреждающие факторы могут вызывать порок развития. Поскольку тератогенный фактор может привести к развитию порока лишь в том случае, если он действовал до окончания формирования органа, а формирование органов (тем более различных пороков) не совпадает во времени, каждый порок имеет свой терминационный период. Например, этот период для неразделившихся близнецов ограии чен первыми двумя неделями после оплодотворения, для двухкамерного сердца - до 34-го дня, для аплазии межжелудочковой перегородки - до 44-го дня, для дефекта межпредсердной перегородки - до 55-го дня беремевиости. Для персистирования артериального протока или овального отверстия, крипторхизма, многих пороков развития зубов продолжительность этого периода не ограничивается беременностью.

Знание терминационных периодов пороков в клинической тератологии имеет исключительное значение , поскольку может оказать помощь в определении причины развития врожденного порока. Если время действия обнаруженного повреждающего фактора совпадает с тер ми на цио иным периодом, то этот фактор может быть принят как вероятная причина врожденного порока. Если же повреждающий фактор действует позднее терминационного периода, он заведомо не может быть причиной порока. Однако необходимо помнить, что терминационные периоды имеют значение лишь для установления причин врожденных пороков, индуцированных тератогенными факторами, поскольку наследственно обусловленные пороки связаны с мутациями, которые, как правило, произошли у родителей или более отдаленных предков, а не у ребенка с врожденным пороком развития. Если врожденные пороки вызывают вторичные изменения в органе (например, гндроуретер вследствие аплазии мышечного слоя или нервного аппарата мочеточника), то тер-минационный период следует определять для первичного порока (в данном случае 12-я неделя эмбрионального развития), а не для вторичного - в приведенном примере для гидроуретера, терминационный период которого может продолжаться до конца II триместра беременности.

В экспериментальной тератологии известно, что вид порока зависит не только от характера тератогена, но и от времени его воздействия. Так, воздействие в разные периоды эмбриогенеза одного и того же тератогенного фактора может привести к различным порокам и, напротив, различные тератогены (например, талидомид и аминоптерин), примененные в одно и то же время, могут дать однотипные пороки. Определенная специфичность тератогенных факторов известна и у человека. Например, талидомид поражает зачатки преимущественно мезодермального происхождения, индуцируя различные дисмелий, противосу-дорожиые средства чаще - расщелины неба и пороки сердца, антикоагулянт варфарин повреждает эпифизы трубчатых костей, алкоголь преимущественно повреждает 11НС и лицевые структуры.

Следует отметить, что как не существует периодов, когда эмбрион был бы одинаково чувствителен к различным агентам, так и нет стадий, когда эмбрион был бы стоек ко всем повреждающим воздействиям.
ТЕРАТОГЕНЕЗ

Тератогенез - это возникновение пороков развития под влиянием факторов внешней среды (тератогенных факторов) или в результате наследственных болезней.

Тератогенные факторы включают лекарственные средства, наркотики и многие другие вещества. Подробнее они описаны в разделе, посвященном тератогенным факторам. Выделяют следующие особенности влияния тератогенных факторов.

1. Действие тератогенных факторов имеет дозозависимый характер. У разных биологических видов дозозависимость тератогенного действия может различаться.

2. Для каждого тератогенного фактора существует определенная пороговая доза тератогенного действия. Обычно она на 1-3 порядка ниже летальной.

3. Различия тератогенного действия у различных биологических видов , а также у разных представителей одного и того же вида связаны с особенностями всасывания, метаболизма, способности вещества распространяться в организме и проникать через плаценту.

4. Чувствительность к разным тератогенным факторам в течение внутриутробного развития может меняться. Выделяют следующие периоды внутриутробного развития человека.

Начальный период внутриутробного развития длится с момента оплодотворения до имплантации бластоцисты. Бластоциста представляет собой скопление клеток - бластомеров. Отличительная черта начального периода - большие компенсаторно-приспособительные возможности развивающегося зародыша. При повреждении большого числа клеток зародыш погибает, а при повреждении отдельных бластомеров - дальнейший цикл развития не нарушается (принцип "все или ничего").

Второй период внутриутробного развития - эмбриональный (18-60-е сутки после оплодотворения). В это время, когда зародыш наиболее чувствителен к тератогенным факторам, формируются грубые пороки развития. После 36-х суток внутриутробного развития грубые пороки развития (за исключением пороков твердого неба, мочевых путей и половых органов) формируются редко.

Третий период - плодный. Пороки развития для этого периода не характерны. Под влиянием факторов внешней среды происходит торможение роста и гибель клеток плода, что в дальнейшем проявляется недоразвитием или функциональной незрелостью органов.

5. В случаях, когда тератогенное действие оказывают возбудители инфекций, пороговую дозу и дозозависимый характер действия тератогенного фактора оценить не удается.

Литература
1.Айала Ф., Кайгер Дж. Современная генетика. М., 2004

2.Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика. М.,

3. Бочков Н.П. Клиническая генетика. М., 2011

4. Введение в молекулярную медицину. Под ред. Пальцева М.А. М., Жимулев И.Ф. - 2011

5. Общая и молекулярная генетика. Новосибирск, Генетика. Под ред. Иванова В.И. М., 2010

6. Введение в генетику развития. М., Нуртазин С.Т., Всеволодов Э.Б. Биология индивидуального развития. А., 2005.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Регуляция онтогенеза

Введение

Генетическая регуляция развития организма

Контактное взаимодействие клеток

Эмбриональная индукция

Морфогенетические поля

Старость и старение

Список литературы

Введение

Почему и каким образом генотип реализуется в фенотип в виде тех или иных клеточных и системных процессов, в виде сложных пространственных и упорядоченных во времени онтогенетических преобразований?

При сравнении зиготы и половозрелой особи, которые, по сути, являются двумя разными онтогенетическими стадиями существования одного и того же организма, обнаруживаются очевидные различия, касающиеся по крайней мере размеров и формы. Начиная с XVII в. ученые пытались познать и объяснить процессы, приводящие к этим количественным и качественным изменениям особи.

Первоначально возникла гипотеза, согласно которой онтогенез рассматривали лишь как рост расположенных в определенном пространственном порядке предсуществующих структур и частей будущего организма.

В рамках этой гипотезы, получившей название преформизма , каких-либо новообразований или преобразований структур в индивидуальном развитии не происходит. Логическое завершение идеи преформизма заключается в допущении абсурдной мысли о "заготов-ленности" в зиготе и даже в половых клетках прародителей структур организмов всех последующих поколений, как бы вложенных последовательно наподобие деревянных матрешек.

Альтернативная концепция эпигенеза была сформулирована в середине XVIII в. Ф.К. Вольфом, впервые обнаружившим новообразование нервной трубки и кишечника в ходе эмбрионального развития. Индивидуальное развитие стали связывать целиком с качественными изменениями, полагая, что структуры и части организма возникают как новообразования из бесструктурной яйцеклетки.

В XIX в. К. Бэр впервые описал яйцо млекопитающих, в том числе и человека, а также зародышевые листки и обнаружил сходство плана строения зародышей различных классов позвоночных - рыб, амфибий, рептилий, птиц, млекопитающих.

Он же обратил внимание на преемственность в этапах развития - от более простого к более сложному. Бэр рассматривал онтогенез не как предобразование , не как новообразование структур, а как их преобразование , что вполне согласуется с современными представлениями.

Биология развития стремится выяснить степень и конкретные пути контроля со стороны генома и одновременно уровень автономности различных процессов в ходе онтогенеза.Не менее важны исследования конкретных онтогенетических механизмов роста и морфогенеза. К ним относятся следующие клеточные механизмы: пролиферация, или размножение клеток, миграция, или перемещение клеток, сортировка клеток, их запрограммированная гибель, дифференцировка клеток, контактные взаимодействия клеток (индукция и компетенция), дистантные взаимодействия клеток, тканей и органов (паракринные, гуморальные и нервные механизмы интеграции). Все эти процессы носят избирательный характер, т.е. протекают в определенных пространственно-временных рамках с определенной интенсивностью, подчиняясь принципу целостности развивающегося организма.

Онтогенезом (от греч. Ontos - сущее и genesis - развитие) называют индивидуальное развитие каждой отдельной особи. Это сложный процесс формирования живого организма от зарождения до смерти. У одноклеточных онтогенез начинается с деления материнского организма на дочерние и продолжается до следующего деления дочернего организма. При бесполом размножении многоклеточных организмов онтогенез начинается с одной или группы соматических клеток, из которых формируется дочерний организм, и заканчивается смертью.

При половом размножении различают три периода индивидуального развития: генетический межклеточный онтогенез субстрат

1. Предзародышевый (проэмбриональный), или прогенез,- период формирования половых клеток и оплодотворение.

2. Зародышевый (эмбриональный) - период, проходящий с образования зиготы до выхода из яйцевых оболочек или рождения.

3. Послезародышевый (постэмбриональный) - включает развитие до половой зрелости (ювенильный период), взрослое состояние (репродуктивный период), пострепродуктивный

период, старение и смерть организма. В ювенильном периоде развитие может быть прямое (неличиночный тип) или с метаморфозом (личиночный тип).

Изменения на разных этапах онтогенеза происходят в различном темпе, наиболее интенсивны в эмбриогенезе, затем постепенно замедляются. Особенно в период половозрелости.

В конце репродуктивного периода естественным завершением онтогенеза является смерть особи.

Однако в основе онтогенеза каждого многоклеточного организма лежат общие механизмы роста и развития, осуществляющиеся через процессы деления клеток, их дифференцировки, морфогенетического движения. Два главных принципа онтогенеза - дифференциация (специализация его отдельных частей) и интеграция - объединение отдельных частей и подчинение их единому организму, проявляются на всех этапах онтогенеза и на всех уровнях организма. Биология. Руководство к практическим занятиям: учебное пособие. Маркина В.В., Оборотистов Ю.Д., Лисатова Н.Г. и др. / Под ред. В.В. Маркиной. 2010. -

По современным представлениям в соматической клетке (бесполое размножение) или зиготе (половое размножение), из которых развивается новый организм, заложена определенная генетическая программа развития. В онтогенезе эта программа реализуется, определяя общее направление морфогенетических процессов, однако конкретная реализация осуществляется в зависимости от условий внешней среды, в пределах нормы реакции.

Генетическая регуляция развития организма

Гены регулируют и контролируют развитие организма на всех этапах онтогенеза. По современным представлениям ген можно определить, как единицу наследственной информации. Занимающую определенное положение в геноме или хромосоме и контролирующую выполнение определенной функции в организме.

Благодаря онтогенезу, происходящему в определенных условиях среды, наследственная информация воплощается в структуры и процессы. На основе генотипа формируется фенотип особи данного биологического вида. Так как естественный отбор происходит в живой природе по фенотипам, именно в развитии особи видоспецифического фенотипа заключается главное эволюционно значимое событие организменного или онтогенетического уровня.

Если иметь в виду вещественно-энергетическое и биоинформационное обеспечение онтогенеза особи, то следует сделать оговорку, что оно начинается до момента оплодотворения и образования зиготы и связано главным образом с женской половой клеткой. Последняя в ходе гаметогенеза (овогенеза) приобретает некоторые характеристики, которые будут использованы не ею самой, а начавшей индивидуальное развитие особью нового поколения. Одна из таких характеристик, пожалуй, наиболее известная, - образование в цитоплазме яйцеклетки большего или меньшего в зависимости от вида животного количества желтка, который используется как питательный материал в процессе развития потомка. Функционально-генетическая активность ряда генов, проявляющаяся в их транскрипции и пост(после)транскрипционных изменениях первичного и(м)РНК транскрипта, во времени отнесена также к периоду до оплодотворения. Образующиеся вследствие названной активности и(м)РНК организуют синтез важных для ранних стадий эмбриогенеза белков. Совокупность событий, происходящих в ово(оо)генезе, но в интересах процесса индивидуального развития нового организма, составляет содержание периода прогенеза - предзародышевого периода индивидуального развития Биология: учебник: в 2 т./ Под ред. В.Н. Ярыгина. - М.; ГЭОТАР-Медиа, 2014. - Т.1. - 736 с.: ил.

Экспрессия генов - это процесс реализации информации, закодированной в структуре ДНК, на уровне РНК и белков.

Генетическая регуляция контролирует весь ход индивидуального развития организма, начиная с образования гамет и кончая формированием систем, регулирующих и координирующих рост и жизнедеятельность взрослого организма.

В овогенезе в цитоплазме яйцеклетки синтезируются и откладываются материнские РНК, которое несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позвоночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начинают регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы, у позвоночных развитие организма регулируется только продуктами деятельности собственных генов зародыша.

Регуляция экспрессии генов в процессе развития организмов осуществляется на всех этапах синтезе белка, как по типу индукции, так и репрессии, причем контроль на уровне транскрипции определяет время функционирования собственных генов зародыша.

У всех многоклеточных от медузы до человека дифференцировка эмбриона вдоль переднезадней оси регулируется группой генов, называемой НОХ. Белки НОХ представляют собой факторы транскрипции, общим в структуре которых является гомеодомен, которым определяется специфичность их связывания с ДНК. Гомеодомен - содержащие гены - определяются по наличию характерной последовательности ДНК длиной 183 пары нуклеотидов (гомеобокса), кодирующей относительно консервативный участок белка длиной 61 а.о.(гомеодомен). Поразительная особенность генов НОХ состоит в том, что они экспрессируется в том же порядке, в каком они расположены в геноме. Гены НОХ и кодируемые ими белки хорошо иллюстрируют такие основополагающие факторы об экспрессии генов в процессах развития, как комплексность и взаимодействие.

Ген XYZ в разных частях эмбриона может транскрибироваться с различными скоростями, и он может быть предрасположен к образованию альтернативных разновидностей транскриптов, и поэтому получается, что один кодирует целое семейство белков. Другой группой транскрипционных факторов, которые важны для раннего развития, когда они действуют как регуляторы органогенеза, являются белки РАХ. Они необходимы для поддержания плюрипотентности популяций стволовых клеток, т.е. они способны дифференцироваться во множество специализированных типов клеток. Гены РАХ1 РАХ9 экспрессируются при развитии позвоночного столба, зачатков конечностей и вилочковой железы (зобной железы, тимуса), где они демонстрируют перекрывающиеся паттерны экспрессии. Ген РАХ№ экспрессируется в раннем развитии у млекопитающих в спинной нервной трубке - области, в которой вырабатываются мигрирующие клетки нервного гребня. Они участвуют в развитии различных органов, включая сердце, периферические и брюшные нервные узлы, меланоциты и шванновские клетки. Функция РАХ6 оказывается ключевой в развитии глаза и зрения.

Контактное взаимодействие клеток

Механизмы, обеспечивающие соединение клеток и межклеточный обмен информацией, сформировались в процессе эволюционного перехода от одноклеточного организма к многоклеточному. Межклеточные взаимодействия необходимы для координации активности, дифференцировки, подвижности и роста клеток в составе тканей и органов. Клетки, входящие в состав ткани, контактируют не только друг с другом, но и с внеклеточным матриксом, состоящим из волокон, белка, коллагена и желатиноподобного вещества, представленного гликопротеинами и протеогликанами. Внеклеточный матрикс объединяет клетки, обеспечивает физическую опору и среду, в которой они перемещаются и взаимодействуют. Физиология и основы анатомии: учебник / Под ред. А.В. Котова, Т.Н. Лосевой. 2011. - 1056 с. (Серия "Учебная литература для студентов медицинских вузов")

Наряду с обновлением клеточной популяции, в самих клетках постоянно наблюдается обновление внутриклеточных структур (внутриклеточная физиологическая регенерация).

Рост клеток проявляется в изменении их размеров и формы. Рост клетки не беспределен и определяется оптимальным ядерно - цитоплазматическим отношением.

Перемещения клеток . Миграция клеток наиболее характерна для периода гаструляции. Миграция осуществляется с помощью нескольких механизмов. Так, различают хемотаксис - движение клеток в направлении градиента концентрации какого-либо химического агента. Гаптотаксис - механизм перемещения клеток по градиенту концентрации адгезионной молекулы. Контактное ориентирование - когда в какой-либо преграде остается один канал для перемещения. Контактное ингибирование - этот способ перемещения наблюдается у к леток ровного гребня.

Миграция носит целенаправленный характер, клетки движутся не хаотически, а по определенным путям именно в те участки зародыша, где в последствии из них будут образовываться зрелые производные. Нарушения клеточной миграции, происходящие в период эмбриогинеза, приводят к формированию таких врожденных пороков развития, как гетеротопии и эктопии, т.е. к аномальной локализации органов или структур.

Механизмы межклеточного взаимодействия . Формирование и функционирование всех тканевых структур может происходить только на основе их взаимного узнавания и взаимной адгезии, т.е. способности клеток избирательно прикрепляться друг к другу или к компонентам внеклеточного матрикса. Клеточную адгезию реализуют специальные гликопротеины - молекулы адгезии - кадгерин, ламинин, коннексин и т.п. Физиология и основы анатомии: учебник / Под ред. А.В. Котова, Т.Н. Лосевой. 2011. - 1056 с. (Серия "Учебная литература для студентов медицинских вузов")

Механизмы взаимодействия клеток с субстратом . Они включают формирование рецепторов клетки к молекулам внеклеточного матрикса. К последним относят производные клеток. Среди которых наиболее изученными адгезионными молекулами являются коллаген, фибронектин, ламинин, тенасцин и т.п.

Для осуществления связи мигрирующих клеток с межклеточным матриксом клетки формируют специфические рецепторы. К ним относится, например, синдекан, который обеспечивает контакт эпителиоцита с базальной мембраной за счет сцепления с молекулами фибронектина и коллагена.

Дистантные межклеточные взаимодействия осуществляется путем секреции гормонов и факторов роста. Последние - это вещества, оказывающие стимулирующее влияние на пролиферацию и дифференцировку клеток и тканей.

Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определенном месте зародыша в определенное время. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша определяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Гаструляция начинается в конце второй недели развития и характеризуется появлением у клеток способности к перемещениям. С началом гаструляции активируются первые тканеспецифические гены. Эмбриобласт расслаивается на эпибласт (слой цилиндрических клеток) и гипобласт (слой кубических клеток, обращённый к бластоцелю). Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск (бластодиск ). В дальнейшем на месте двухслойного зародышевого диска путём миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма.Гипобласт . Формирование гипобласта (первичной энтодермы) происходит по каудально-краниальному градиенту. Обращённые к бластоцелю клетки вентральной части внутренней клеточной массы обособляются в тонкий слой - гипобласт. Клетки гипобласта выселяются из внутренней клеточной массы вследствие слабого адгезионного взаимодействия между ними. Интенсивно пролиферирующие клетки гипобласта перемещаются по внутренней поверхности трофобласта и формируют внезародышевую энтодерму прилегающей к трофобласту стенки желточного мешка. Гистология, эмбриология, цитология: учебник для вузов / Под ред. Э.Г. Улумбекова, Ю.А. Челышева - 3-е изд., - М.: ГЭОТАР-Медиа, 2012.

Перемещения клеток при гаструляции

Гистология, эмбриология, цитология: учебник для вузов / Под ред. Э.Г. Улумбекова, Ю.А. Челышева - 3-е изд., - М.: ГЭОТАР-Медиа, 2012.

Эмбриональная индукция

Эмбриональная идукция - взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка.

Эмбриональная индукция или механизмы дифференцировки были открыты 1901г . при изучении образования зачатка хрусталика глаз у зародышей земноводных.

Гипотеза: существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этой клетки. В условиях отсутствия клеток - организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов.

Эксперимент: Г. Шпеман и его сотрудница Х. Мангольд открыли у зародышей амфибий "организатор". Контрольный эксперимент был проведен Хильдой Мангольд в 1921 г. Она вырезала кусочек ткани из дорсальной губы бластопора гаструлы гребенчатого тритона со слабопигментированным зародышем. Она пересадила ее в вентральную часть другой гаструлы близкого вида тритона обыкновенного, зародыш которого характеризуется обильной пигментацией. После пересадки у гаструлы - реципиента из тканей трансплантата развивалась новая хорда и миотомы.

Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует развитие зародыша как в обычном, так и нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом. Регулируя его в целях достижения этого результата.

Морфогенетические поля

Морфогенез - процесс образования структур и органов и преобразования их формы в процессе индивидуального развития организмов. Это, несомненно, самый сложный и упорядоченный природный процесс.

В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. У хордовых животных первые видимые морфогенетические события - закладка осевых органов - отмечаются в ходе нейруляции. Однако следует помнить, что индукционные взаимодействия групп клеток (зачатков), определяющие начальные этапы морфогенеза, осуществляются еще на стадии бластулы и ранней гаструлы (см. п. 8.2.8). Таким образом, правомерно считать, что морфогенез на надклеточном уровне начинается со стадии бластулы. В период гаструляции, как и во время нейруляции, перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой все более локальные процессы. Внутри зачатка каждого из формирующихся органов происходит дальнейшая последовательная дифференциация.

Параллельно с образованием многоклеточных структур формируются субклеточные и клеточные элементы. Происходят сложные цитодифференцировки, которые осуществляются путем координированной активности многих внутриклеточных образований - мембраны, микротрубочек и центров их организации, аппарата Гольджи и ряда других. Так, диффе-ренцировка всасывающих клеток эпителия почек и кишечника связана со сборкой мощных пучков актиновых микрофиламентов, образующих структурную основу микроворсинок, размеры и строение которых характеризуются высокой точностью (определенностью). Помимо этого, происходит перестройка клеточных мембран, определяющая их будущие функциональные свойства. Эти процессы, в свою очередь, сопровождаются синтезом и пространственной организацией макромолекул, в частности, образованием и встраиванием в плазмалемму белковых комплексов, обеспечивающих различные виды транспорта веществ. Таким образом, морфогенез представляет собой многоуровневый динамический процесс, который в конечном итоге приводит к формированию интегрированной сбалансированной (целостной) особи конкретного биологического вида.

Морфогенез как рост и клеточная дифференцировка относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым. Главное свойство ациклических процессов - их пространственно-временная организация. Проблема формирования пространственной структуры развивающегося организма относится к одной из наиболее сложных в биологии.

Система генов, регулирующих образование какого-либо органа или реализацию конкретного морфогенетического процесса, организована по иерархическому принципу . Так, в ходе онтогенеза происходит последовательная активация определенных групп генов, причем продукты ранее активированных генов влияют на экспрессию следующих групп. В генных каскадах существуют " гены - господа " (" мастер - гены " ), активация которых инициирует процесс и включает экспрессию целогокомплекса подчиненных "генов-рабов", что в конечном итоге и приводит к формированию определенной структуры.

Биология: учебник: в 2 т./ Под ред. В.Н. Ярыгина. - М.; ГЭОТАР-Медиа, 2014. - Т.1. - 736 с.: ил.

Таким образом, в геноме организмов содержится информация о развитии особи определенного вида и, кроме того, присутствуют гены, экспрессия которых может привести к формированию конкретных зародышевых листков, органов, тканей. В генотипе зиготы содержатся также аллели родителей, обладающие возможностью реализоваться в определенные признаки. Однако известно, что разноуровневая регуляция экспрессии генов (вспомним хотя бы альтернативный сплайсинг) приводит к тому, что результатом активности даже одних и тех же генов могут быть совершенно разные наборы конечных продуктов и, как следствие, множественность возможных путей развития.

Старость и старение

Старость представляет собой стадию индивидуального развития, по достижении которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде, эмоциональной сфере.

Старческие изменения становятся очевидными и нарастают в пострепродуктивном периоде онтогенеза. Различают хронологический и биологический (физиологический) возраст. Согласно современной классификации, основанной на оценке многих средних показателей состояния организма, людей,хронологический (паспортный, календарный) возраст которых достиг 60-74 лет, называют пожилыми, 75-89 лет - старыми, свыше 90 лет - долгожителями. Точное определение биологического возраста затруднено тем, что отдельные признаки старости проявляются в разном хронологическом возрасте и характеризуются различной скоростью нарастания. Кроме того, возрастные изменения даже одного признака подвержены значительным половым и индивидуальным колебаниям.

Состояние старости достигается благодаря изменениям, составляющим содержание процесса старения . Этот процесс захватывает все уровни структурной организации организма - молекулярный, субклеточный, клеточный, тканевой, органный. Суммарный результат многочисленных частных проявлений старения на уровне целостного организма заключается в нарастающем с возрастом снижении жизнеспособности особи, уменьшении эффективности приспособительных, гомеостатических механизмов.

Признаки старения сердечно - сосудистой системы становятся заметными обычно в возрасте после 40 лет. Закономерные изменения наблюдаются в стенках сосудов: в них откладываются липиды, прежде всего холестерин, что наряду с другими структурными превращениями снижает эластичность и искажает ответы на различные стимулы, регулирующие кровообращение. Типично разрастание в стенках сосудов и сердца соединительной ткани, замещающей рабочую мышечную ткань. В результате снижается эффективность работы сердца, нарушается кровоснабжение тканей и органов. Так, кровоток по сосудам головного мозга 75-летнего человека по сравнению с 30-летним уменьшен на 20%.

В основе функциональных расстройств дыхательной системы лежит разрушение межальвеолярных перегородок, что сокращает дыхательную поверхность, разрастание в легких соединительной ткани, что снижает эффективность аэрогематического обмена кислорода. В итоге с возрастом падает жизненная емкость легких, которая к 75 годам достигает всего 56% от уровня в возрасте 30 лет.

Легко заметным изменением в системе пищеварения является потеря зубов. Падает эффективность функционирования пищеварительных желез, нарушения двигательной (моторной) функции кишечника нередко приводят к привычным запорам.

В процессе старения страдает функция мочевыделительной системы , снижается интенсивность фильтрации в почечных клубочках (на 31% в 75-летнем возрасте по сравнению с 30-летним), так же, как и обратное всасывание веществ из фильтрата в почечных канальцах. Ухудшение функции мочевыделения объясняется гибелью с возрастом значительного количества нефронов (до 44% от уровня 30-летнего возраста), представляющих собой структурно-функциональные единицы почек.

Специального внимания заслуживают изменения в процессе старения со стороны мышечной системы и скелета. Снижается сила сокращений поперечнополосатой мускулатуры, быстрее развивается утомление, наблюдается атрофия мышц. Характерная для стареющих людей перестройка костей заключается в разрежении их вещества (старческий остеопороз), что приводит к снижению прочности.

В процессе старения организма существенные изменения происходят в репродуктивной системе. При этом они затрагивают обе основные функции главных органов названной системы - половых желез: выработку гамет и образование половых гормонов. У женщин овогенез прекращается по достижении ими менопаузы. Образование функционально полноценных сперматозоидов в мужском организме возможно, по-видимому, даже в преклонном возрасте.

Изменение гормонального профиля людей в связи с угасанием репродуктивной функции носит сложный характер. Распространено мнение о прогрессивном снижении с возрастом концентрации у мужчин тестостерона, а у женщин эстрадиола и прогестерона - главных мужского и женских половых гормонов. Напомним, что оба типа гормонов образуются организмами обоих полов, только в разном количестве. Указанные сдвиги сопровождаются повышением секреции эстрадиола и прогестерона у мужчин и тестостерона у женщин. Вместе с тем содержание фолликулостимулирующего гормона у 80-90-летних женщин выше в 14 раз, а лютеинизирующего гормона - в 5 раз, чем у 20-30-летних. Резко нарушено у старых людей соотношение названных гормонов гипофиза, что является важной причиной нарушения репродуктивной функции в целом. Картина усложняется также тем, что в процессе старения изменяется ответ ткани на половые гормо ны в связи с сокращением количества клеточных рецепторов к ним.

ПРОЯВЛЕНИЕ СТАРЕНИЯ НА МОЛЕКУЛЯРНОМ, СУБКЛЕТОЧНОМ И КЛЕТОЧНОМ УРОВНЯХ

Молекулярные и клеточные проявления старения многообразны. Они заключаются в изменении показателей потоков информации и энергии, состояния ультраструктур дифференцированных клеток, снижении интенсивности клеточной пролиферации.

Немаловажное значение при старении имеют изменения энергетики организма, в частности, давно отмечена обратная связь между продолжительностью жизни животных различных видов и удельной скоростью обмена веществ. Существует особое понятие энергетического жизненного потенциала, отражающего общее количество расходуемой за жизнь энергии. Его величина для млекопитающих (кроме приматов) составляет примерно 924 кДж/г, большинства приматов - 1924 кДж/г, лемура, обезьяны-капуцина и человека - 3280 кДж/г массы тела. Изменения потока энергии в процессе старения состоят в снижении количества митохондрий в клетках, а также падении эффективности их функционирования. Так, у взрослых крыс количество кислорода, потребляемое на 1 мг белка митохондрий, более чем в 1,5 раза выше, чем у старых животных. Важное свойство стареющего организма - смещение в процессах энергообеспечения функций соотношения между тканевым дыханием и гликолизом (бескислородный путь образования АТФ) в пользу последнего. Изменения в процессе старения ультраструктуры клеток затрагивают практически все органеллы, как общего, так и специального значения.

Список литературы

Реферат составлен на основе учебного пособия " Регуляция онтогенеза"

кандидат биологических наук, доцент Т.В. Солтыс

1. Биология: учебник: в 2 т./ Под ред. В.Н. Ярыгина. - М.; ГЭОТАР-Медиа, 2014. - Т.1. - 736 с.: ил.

2. Биология. Руководство к практическим занятиям: учебное пособие. Маркина В.В., Оборотистов Ю.Д., Лисатова Н.Г. и др. / Под ред. В.В. Маркиной. 2010. -

3. Биология: учебник: в 2 т./ Под ред. В.Н. Ярыгина. - М.; ГЭОТАР-Медиа, 2014. - Т.1. - 736 с.: ил.

4. Физиология и основы анатомии: учебник / Под ред. А.В. Котова, Т.Н. Лосевой. 2011. - 1056 с. (Серия "Учебная литература для студентов медицинских вузов")

5. Гистология, эмбриология, цитология: учебник для вузов / Под ред. Э.Г. Улумбекова, Ю.А. Челышева - 3-е изд., - М.: ГЭОТАР-Медиа, 2012.

Размещено на Allbest.ru

Подобные документы

    Анализ особенностей онтогенеза растительной клетки. Возникновение и накопление различий между клетками, образовавшимися в результате деления. Эмбриональная фаза онтогенеза, фазы растяжения, дифференцировки клетки, зрелости. Старение и смерть клетки.

    доклад , добавлен 28.04.2014

    Дорепродуктивный, репродуктивный и пострепродуктивный период онтогенеза. Сравнение онтогенеза и филогенеза. Взаимосвязь и взаимодействие онтогенетических дифференцировок. Проблема взаимоотношений индивидуального развития организмов и их эволюции.

    реферат , добавлен 26.10.2015

    Координация нервной системой деятельности клеток, тканей и органов. Регуляция функций организма, взаимодействие его с окружающей средой. Вегетативная, соматическая (сенсорная, моторная) и центральная нервная система. Строение нервных клеток, рефлексы.

    реферат , добавлен 13.06.2009

    Основные группы ферментов генетической инженерии: рестриктазы и лигазы. Регуляция экспрессии гена у прокариот. Способы прямого введения гена в клетку. Генетическая трансформация соматических клеток млекопитающих. Получение трансгенных животных.

    курсовая работа , добавлен 24.11.2010

    Достижения в области изучения стволовых клеток. Виды стволовых клеток, особенности их функционирования. Эмбриональные и гемопоэтические стволовые клетки. Стволовые клетки взрослого организма. Биоэтика использования эмбриональных стволовых клеток.

    презентация , добавлен 22.12.2012

    Белки - основные структурные элементы клеток и тканей организма. Процессы распада и синтеза белков в ходе тканевого метаболизма. Цикл сложных химических превращений белковых веществ. Процесс переваривания и всасывания белков. Регуляция белкового обмена.

    реферат , добавлен 30.01.2011

    Формы, механизмы, органы, регуляция иммунитета. Субпопуляции Т-лимфоцитов, их функции. История открытия регуляторных Т-клеток. Эффективность микробиологической диагностики. Иммунная регуляторная система. Будущее трансплантологии, технические трудности.

    контрольная работа , добавлен 11.05.2016

    Характеристика стадий онтогенеза многоклеточных животных. Особенности эмбрионального и постэмбрионального периодов развития. Первичный органогенез, дифференцировка клеток зародыша. Последовательные стадии эмбрионального развития животных и человека.

    презентация , добавлен 07.11.2013

    Живая протоплазма клеток организма. Состав гемоглобина крови. Элементы, которые содержатся в организме человека в относительно больших количествах. Процессы возбудимости и расслабления. Значение кальция в обмене веществ. Регуляция водного равновесия.

    презентация , добавлен 11.01.2014

    Понятие и биологическое значение мембран в клетках организма, функции: структурные и барьерные. Их значение во взаимодействия между клетками. Десмосома как один из типов контакта клеток, обеспечивающие их взаимодействие и прочное соединение между собой.