Внутренние силовые факторы. Метод сечений

НАГРУЗКИ

Рассмотрим балку, находящуюся под действием плоской системы сил (рис. 12.7). Двумя поперечными сечениями, отстоящими на расстоянии друг от друга, выделим из балки элемент так, чтобы на него не действовали внешние сосредоточенные силы и моменты.

На левый торец элемента действуют внутренние усилия М и Q (рис. 13.7), а на правый Здесь представляют собой приращения величин внутренних усилий на участке балки. Кроме того, на элемент действует распределенная нагрузка, перпендикулярная к оси балки; интенсивность ее у левого конца элемента равна q, а у правого (рис. 13.7) .

Так как вся балка в целом находится в равновесии, то в равновесии находится и ее элемент Составим уравнение равновесия элемента в виде суммы проекций на ось у всех действующих на него сил (рис. 13.7):

Здесь второе слагаемое представляет собой величину высшего порядка малости; отбрасывая его, получаем

Итак, первая производная от. поперечной i силы по абсциссе сечения равна интенсивно распределенной нагрузки, перпендикулярной к оси балки.

Составим теперь уравнение равновесия элемента в виде суммы моментов действующих на него сил относительно точки К (рис. 13.7):

Отбросив бесконечно малые величины высших (второго и третьего) порядков, получим:

Таким образом, первая производная от изгибающего момента по абсциссе сечения равна поперечной силе. Эта зависимость называется теоремой Журавского.

Зависимости (5.7) и (6.7) действительны, когда абсцисса поперечного сечения возрастает от левого конца балки к правому. Если, наоборот, абсцисса х возрастает от правого конца балки к левому, то в правых частях формул (5.7) и (6.7) перед q и Q должен стоять знак «минус».

Из курса высшей математики известен геометрический смысл первой производной при любом значении аргумента она равна тангенсу угла а между касательной к кривой (в точке с координатами и положительным направлением оси Положительные и отрицательные значения угла а показаны на рис. 14.7, а.

Если первая производная (а следовательно, и угол а) положительна, то функция возрастает (точка на рис. 14.7, а), а если она отрицательна, - то убывает (точка на рис. 14.7, а). Экстремум (максимум или минимум) функции имеется при тех значениях при которых производная равна нулю и, следовательно, угол а также равен нулю, т. е. касательная к кривой параллельна оси (точка К на рис. 14.7, а).

Используя изложенные зависимости между функцией и ее первой производной, из теоремы Журавского можно сделать ряд важных выводов:

1. Тангенс угла между касательной к линии, ограничивающей эпюру М, и осью эпюры равен поперечной силе Q (рис. 14.7, б, в), т. е.

Так, например, тангенс отрицательного угла а (рис. 10.7, в) на участке II балки, изображенной на рис. 10.7, а, имеет значение т. е. равен поперечной силе Q на этом участке (рис. 10.7, б). На участках III и IV этой же балки поперечные силы Q одинаковы и равны (см. рис. 10.7, б). В соответствии с этим прямые на рис. 10.7, в параллельны друг другу; тангенс угла их наклона к оси эпюры равен

2. На участках балки, на которых поперечная сила положительна, изгибающий момент возрастает (слева направо), а на участках, на которых она отрицательна, - убывает.

Для примера на рис. 15.7, а изображены четыре эпюры Q, а под каждой из них на рис. 15.7, б, два из возможных вариантов эпюры М. Первым двум эпюрам Q (с положительными ординатами) соответствуют эпюры М с возрастающими (слева направо) ординатами, т. е. с положительными углами Последним двум эпюрам Q (с отрицательными ординатами) соответствуют эпюры М с убывающими (слева направо) ординатами, т. е. с отрицательными углами Этот же вывод можно проиллюстрировать эпюрами Q и М, изображенными на рис. 10.7: на участке II балки поперечная сила отрицательна, а на участке III - положительна (см. рис. 10.7, б); в соответствии с этим на участке II изгибающие моменты убывают (в алгебраическом смысле), а на участке - возрастают (см. рис. 10.7, в).

3. Чем больше по абсолютной величине значение поперечной силы Q, тем круче линия, ограничивающая эпюру М. Этот вывод непосредственно вытекает из зависимости (7.7). В соответствии с данным выводом линии, ограничивающие эпюры М (рис. 15.7, б, в), круче в точках чем в точках а, так как поперечные силы больше по абсолютной величине, чем Линии, ограничивающие эпюры М, не могут иметь очертаний, показанных на рис. 15.7, б, в пунктиром, так как они тогда были бы круче в точках а, чем в точках b, что невозможно при поперечных силах меньших (по абсолютной величине) Такую же зависимость между эпюрами Q и М можно проследить и на рис. 10.7 и 11.7.

На основании рис. 15.7 можно сделать вывод о том, что на участке балки с возрастающими (в алгебраическом смысле) слева направо значениями Q линия, ограничивающая эпюру М, обращена выпуклостью вниз, а с убывающими - выпуклостью вверх.

4. На участке балки, на котором поперечная сила имеет постоянное значение, эпюра М ограничена прямой линией (см., например, на рис. 10.7 эпюры Q и М на участках III и IV балки). При эта линия наклонена к оси эпюры М под некоторым углом (где - см. вывод 1), а при она параллельна оси эпюры.

(см. скан)

В последнем случае соответствующий участок балки находится в состоянии чистого изгиба.

5. Если на границе соседних участков балки эпюра Q не имеет скачка, то линии, ограничивающие эпюру М на этих участках, сопрягаются без перелома, т. е. имеют в точке сопряжения общую касательную.

На рис. 16.7, а показаны две эпюры Q, не имеющие скачков на границах соседних участков (в сечениях А). На рис. 16.7, б сплошными линиями изображены правильные сопряжения линий, ограничивающих эпюры М (без переломов в точках а), а пунктирными линиями - неправильные варианты сопряжения.

6. Если на границе соседних участков балки в эпюре Q имеется скачок, то линии, ограничивающие эпюру М на этих участках, сопрягаются с переломом, т. е. не имеют в точке сопряжения общей касательной.

На рис. 17.7, а показаны три эпюры Q, имеющие скачки на границах соседних участков (в сечениях А), а на рис. 17.7,б - соответствующие им сопряжения линий, ограничивающих эпюры переломами в точках а.

7. Изгибающий момент достигает максимума или минимума в сечениях балки, в которых поперечная сила равна нулю; касательная к линии, ограничивающей эпюру М, в этом сечении параллельна оси эпюры.

Рабочие гипотезы СОПРОМАТА

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТУПЕНЧАТЫХ БРУСЬЯХ С НЕСКОЛЬКИМИ СИЛОВЫМИ УЧАСТКАМИ.

ОТВЕТ: Растяжением или сжатием бруса называют такой его вид деформации, при котором все внешние силы направлены по продольной оси, а в поперечных сечениях возникает единственный внутренний силовой фактор – продольная сила N. Ее величину определяют, используя метод сечений: , т.е. продольная сила в рассматриваемом сечении бруса численно равна алгебраической сумме всех внешних сил, расположенных по одну сторону от сечения. Условились считать N>0, если она направлена в сторону от сечения, т.е. растягивает и N<0, если сжимает. Для полного суждения о прочности бруса необходимо построить график изменения продольной силы по длине бруса – эпюру продольной силы (Эп.N).

Напряжения и деформации при осевом растяжении-сжатии

В процессе деформирования в поперечных сечениях бруса при осевом растяжении-сжатии возникают только нормальные напряжения σ, причем они распределяются равномерно по поперечному сечению.

При растяжении-сжатии брус испытывает только линейные деформации.

– абсолютная продольная деформация груза (удлинение)

Относительная продольная деформация

- абсолютная поперечная деформация (сужение)

Относительная поперечная деформация

Связь между и : - коэффициент Пуассона.

Линейная закономерность, связывающая напряжения и деформации – закон Гука при осевом растяжении-сжатии.

Определение геом. характеристик.

Рассмотрим определение геом. характеристик , для наиболее часто встречаемых поперечных сечений валов.

1.Сплошной вал

2.Полый вал

3.Тонкостенное трубчатое сечение

К тонкостенным отн-ся трубу с соотношением

Определение перемещений при изгибе. Условие жесткости. Дифференциальное уравнение изогнутой оси балки.

Варианты расчета простых статически неопределимых балок

Существует несколько способов расчета простых балок:

1.Сравнение линейных перемещений.

ΔВ=ΔВq+ΔBRB=0(1) доп. уравнение деформаций

Слагаемые в(1) могут быть найдены исп-я готовые таблицы или универсальные уравнения. Применительно к рас-му предмету:

ΔBq=-qe 4 /8EIx; ΔBRB=RBe 3 /3EIx;

ΔB=-qe 4 /8EIx +RBe 3 /3EIx =0 =>RB=3qe/8

2. Сравнение угловых перемещений.

Можно отбросить связь, препятствующая повороту опорного сечения А и записать

ΔA=ΔAq+ΔAMA=0(2)

Также ур-е деформации слагаемое означает углы поворота.

3.Составление замкнутой системы ур-я.

3 ур-я статики+ унивес. ур-е

43. Метод сил для расчета сложных СНС.

Метод при котором за неизвестное принимаются сосредоточенные моменты наз-ся методом сил. Он явл-ся наиболее распространенным и ис-ся для любых упругих систем (балки, рамы,эстакады итд.).

Например:

К трем ур-ям статики для решения данной СНС добавится 3 уравнения, выражающие рав-во 0 перемещений по направлениям всех отброшенных связей т.е. опорное сечение и не перемещаются им в горизонтальном или в вертикальном перемещениях и не переворачиваются.

X1 Δ1=0

X2 Δ2=0 (1)

X3 Δ3=0

Каждое уравнение системы(1) можно записать в развернутом виде:

Δ1=Δ11+Δ12+Δ13+Δ1f=0 (2)

Первый символ указывает направление; 2-й воз-е.

Δ1f-перемещение опорного сечения А в направлении действия X, вызванное внешней нагрузкой

(2) можно выразить через единичные перемещения и искомое неизвестное (это первые три слагаемых)

Δ11=δ11-x1 и тогда система примет закончен. вид.

δ11 x1+ δ12 x2+ δ13 x3+ Δ1f=0

δ21 x1+ δ22 x2+ δ23 x3+ Δ2f=0 (3)-система кумс.

δ31 x1+ δ32 x2+ δ33 x3+ Δ3f=0

Канонические ур-я метода сил-КУМС.

Число ур-й равно степени статической неопределимости.

Рабочие гипотезы СОПРОМАТА

ОТВЕТ: В отличие от термеха, базирующегося на модели абс. твердого тела, в сопромате принята своя расчетная модель-модель идеализированного деформируемого тела. А для упрощения расчетов принимаются следующие допущения или гипотезы: 1) Материал тела имеет сплошное строение. 2) материал однороден, т.е. во всех точках свойства одинаковы. 3) материал изотропен, т.е. по всем направлениям свойства одинаковы. 4) до приложения внешних сил начальные напряжения в материале отсутствуют. 5) при решении реальных задач целесообразно использовать принцип суперпозиции, или принцип независимости действия сил, т.е. воздействие на конструкцию группы сил равно сумме воздействий от каждой силы в отдельности и не зависит от последовательности приложения этих сил.

ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ И МЕТОД ИХ ОПРЕДЕЛЕНИЯ.

ОТВЕТ: Под действием внешних сил на брус возникают внутренние силы или внутренние силовые факторы, для определения которых в сопромате принят единый расчетный метод – метод сечений. 1) разрезаем мысленно брус в исследуемом сечении на 2 части I и II. 2) Отбрасываем одну из частей. 3) Заменяем действие отбрасываемой части II на часть I внутренними силовыми факторами(в общем случае их 6). Q x Q y – поперечные силы, N z – продольная сила, M x M y – изгибающие моменты, M z – крутящий момент. 4) Уравновешиваем оставшуюся часть бруса и с помощью уравнений равновесия термеха находим искомые силовые факторы.

ПОНЯТИЕ О НАПРЯЖЕНИЯХ, ДЕФОРМАЦИЯХ И ПЕРЕМЕЩЕНИЯХ.

ОТВЕТ: Мерой интенсивности действия внутренних сил в окрестности точки рассматриваемого поперечного сечения являются напряжения, определяемые отношением силы к единице площади [Па]. Если в поп. сечении выделить элемент DА, к которому будет приложена сила DР, то DР/DА=р m – среднее полное напряжение в рассматриваемой точке поперечного сечения. - полное истинное напряжение. Вектор раскладывают на и . - нормальное напряжение – вызывает разрушения путем отрыва. - касательное напряжение – вызывает разрушение путем сдвига. Перемещения и деформации – понятия, характеризующие изменение размеров и формы исследуемого тела. При этом перемещения являются следствием деформации.

Классификация сил

Силы делятся на внешние и внутренние. Внешние силы характеризуют взаимодействие между телами, внутренние – взаимодействие между частицами одного тела.

Внешние силы, действующие на элементы конструкций, делятся на активные , называемые нагрузкой, и реактивные (реакции связей). Нагрузка подразделяется на поверхностную и объемную. К поверхностной нагрузке относятся силы контакта, возникающие при сопряжении двух элементов конструкции или при их взаимодействии; к объемным (массовым) силам – силы, действующие на каждый бесконечно малый элемент объема. Примерами объемных сил являются силы инерции, силы тяжести, силы магнитного взаимодействия.

По характеру действия на конструкцию различают нагрузку:

  • статическую – изменяется медленно и плавно от нуля до конечного значения так, что ускорения точек системы, возникающие при этом, весьма малы, поэтому силами инерции по сравнению с нагрузкой можно пренебречь;
  • динамическую – прикладывается к телу за малый промежуток времени или мгновенно с образованием значительных ускорений;
  • повторно-переменную – изменяющуюся по произвольному периодическому закону.

Внутренние силовые факторы (метод сечений)

Пусть свободное тело под действием системы сил находится в равновесии (рис. 2.1). Требуется определить внутренние силы в сечении . Мысленно разрежем тело на две части по данному сечению и рассмотрим условия равновесия одной (любой) части тела. Обе части после разреза, вообще говоря, не будут находиться в равновесии, так как нарушены внутренние связи. Заменим действие левой части тела на правую и правой на левую некоторой системой сил в сечении , т.е. внутренними силами (рис. 2.2). Характер распределения внутренних сил в сечении неизвестен, но они должны обеспечить равновесие каждой части тела. Для составления условия равновесия отсеченной части приведем внутренние силы в виде главного вектора и главного момента к центру тяжести сечения и спроецируем их на оси координат (рис. 2.3). Получим три проекции главного вектора и три проекции главного момента которые называются внутренними силовыми факторами: – продольная сила; – поперечные силы; – крутящий момент; – изгибающие моменты.

Составив условия равновесия отсеченной части, получим

(2.1)

Уравнения (2.1) называются зависимостью между внешней нагрузкой на отсеченной части и внутренними силовыми факторами (статическими эквивалентами внутренних

Рис. 2.1

Рис. 2.2

сил). Если внешние нагрузки известны, то с их помощью можно определить внутренние силовые факторы.

Различают следующие основные виды деформаций:

Рис. 2.3

Рис. 2.4

Понятие о напряжении

Согласно гипотезе 1 (см. п. 2.1.1) можно предположить, что внутренние силы непрерывно распределены по площади поперечного сечения бруса. Пусть на малую, но конечную площадку А (рис. 2.5) действует внутренняя элементарная сила R. Разложив R на составляющие по осям получим ее компоненты Отношение вида

определяет среднее напряжение на данной площадке в данной точке.

Полное, или истинное, напряжение в точке есть отношение

которое определяет интенсивность внутренних сил в данной точке рассматриваемого сечения. Поскольку через точку тела можно провести бесчисленное множество сечений, то в данной точке имеется бесчисленное множество напряжений, связанных с площадками действия. Совокупность всех напряжений, действующих на разных площадках в данной точке, называется напряженным состоянием точки . Единица напряжения – Н/м2 или Па. По аналогии с выражением (2.3) можно записать:

Выражение (2.4) определяет нормальное напряжение σ x (рис. 2.6), вектор которого направлен так же, как и вектор нормальной силы Ν x. Выражения (2.5) и (2.6) определяют касательные напряжения ; их векторы имеют те же направления, что и, соответственно, и. Первый индекс при τ указывает, какой оси параллельна нормаль к площадке действия рассматриваемого напряжения, второй индекс показывает, какой оси параллельно данное напряжение.

Зависимость между полным напряжением К и его составляющими выражается формулой

Рассмотрим связь между напряжениями и внутренними силовыми факторами в поперечном сечении бруса.

Рис. 2.5

Рис. 2.6

Составляющие главного вектора и главного момента внутренних сил будут иметь следующий вид.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.

    реферат , добавлен 23.06.2010

    Потенциальная энергия заряда в однородном поле и потенциальная энергия взаимодействия точечных зарядов. Понятие разности потенциалов. Связь напряжения и напряженности. Принцип суперпозиции для потенциалов. Понятие эквипотенциальных поверхностей.

    контрольная работа , добавлен 06.10.2013

    Общая характеристика сопротивления материалов. Анализ прочности, жесткости, устойчивости. Сущность схематизации геометрии реального объекта. Брус, оболочка, пластина, массив как отдельные тела простой геометрической формы. Особенности напряжения.

    презентация , добавлен 22.11.2012

    Определение размеров поперечных сечений стержней, моделирующих конструкцию робота-манипулятора. Вычисление деформации элементов конструкции, линейного и углового перемещения захвата. Построение матрицы податливости системы с помощью интеграла Мора.

    курсовая работа , добавлен 05.04.2013

    Вычисление реакций опор в рамах и балках с буквенными и числовыми обозначениями нагрузки. Подобор номеров двутавровых сечений. Проведение расчета поперечных сил и изгибающих моментов. Построение эпюр внутренних усилий. Определение перемещения точек.

    курсовая работа , добавлен 05.01.2015

    Теорема о циркуляции вектора. Работа сил электростатического поля. Потенциальная энергия. Разность потенциалов, связь между ними и напряженностью. Силовые линии и эквипотенциальные поверхности. Расчет потенциалов простейших электростатических полей.

    презентация , добавлен 13.02.2016

    Энергия ветра и возможности её использовании. Работа поверхности при действии на нее силы ветра. Работа ветрового колеса крыльчатого ветродвигателя. Перспективы развития ветроэнергетики в Казахстане. Преимущества и недостатки систем ветродвигателей.

    реферат , добавлен 27.10.2014

    Задача сопротивления материалов как науки об инженерных методах расчета на прочность, жесткость и устойчивость элементов конструкций. Внешние силы и перемещения. Классификация нагрузки по характеру действия. Понятие расчетной схемы, схематизация нагрузок.