Спектр периодической последовательности. Практическая работа «Расчет и построение спектра периодической последовательности прямоугольных импульсов

СИГНАЛОВ

Рассмотрим несколько примеров периодических колебаний, часто используемых в различных радиотехнических устройствах.

1. ПРЯМОУГОЛЬНОЕ КОЛЕБАНИЕ (РИС. 2.3)

Подобное колебание, часто называемое меандром, находит особенно широкое применение в измерительной технике.

При выборе начала отсчета времени в соответствии с рис. 2.3, а функция является нечетной, а рис. 2.3, б - четной. Применяя формулы (2.24), находим для нечетной функции (рис. 2.3, а) при s(t)=e(t):

Рис. 2.3. Периодическое колебание прямоугольной формы (меандр)

Рис. 2.4. Коэффициенты комплексного (а) и тригонометрического (б) ряда Фурье колебания, показанного на рис. 2.3

Учитывая, что , получаем

Начальные фазы в соответствии с (2.27) равны для всех гармоник.

Запишем ряд Фурье в тригонометрической форме

Спектр коэффициентов комплексного ряда Фурье показан на рис. 2.4, а, а тригонометрического ряда - на рис. 2.4, б (при ).

При отсчете времени от середины импульса (рис. 2.3, б) функция является четной относительно t и для нее

Графики 1-й гармоник и их суммы изображены на рис. 2.5, а. На рис. 2.5, б эта сумма дополнена 5-й гармоникой, а на рис. 2.5, в - 7-й.

С увеличением числа суммируемых гармоник сумма ряда приближается к функции всюду, кроме точек разрыва функции, где образуется выброс. При величина этого выброса равна , т. е. сумма ряда отличается от заданной функции на 18%. Этот дефект сходимости в математике получил название явления Гиббса.

Рис. 2.5. Суммирование 1-й и 3-й гармоник (а), 1, 3 и 5-й гармоник (б), 1, 3, 5 и 7-й гармоник (в) колебания, показанного на рис. 2.3

Рис. 2.6 Периодическое колебание пилообразной формы

Рис. 2.7. Сумма первых пяти гармоник колебания, показанного на рис. 2.6

Несмотря на то, что в рассматриваемом случае ряд Фурье не сходится к разлагаемой функции в точках ее разрыва, ряд сходится в среднем, поскольку при выбросы являются бесконечно узкими и не вносят никакого вклада в интеграл (2.13).

2. ПИЛООБРАЗНОЕ КОЛЕБАНИЕ (РИС. 2.6)

С подобными функциями часто приходится иметь дело в устройствах для развертки изображения в осциллографах. Так как эта функция является нечетной, ряд Фурье для нее содержит только синусоидальные члены. С помощью формул (2.24)-(2.31) нетрудно определить коэффициенты ряда Фурье. Опуская эти выкладки, напишем окончательное выражение для ряда

Как видим, амплитуды гармоник убывают по закону , где . На рис. 2.7 показан график суммы первых пяти гармоник (в увеличенном масштабе).

3. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ (РИС. 2.8)

Ряд Фурье для этой функции имеет следующий вид:

Рис. 2.8. Сумма трех первых гармоник периодической функции

Рис. 2.9. Периодическая последовательность прямоугольных импульсов с большой скважностью

На рис. 2.8 изображена сумма первых трех членов этого ряда. В данном случае отметим более быстрое убывание амплитуд гармоник, чем в предыдущих примерах. Это объясняется отсутствием разрывов (скачков) в функции.

4. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (РИС 2.9)

Применяя формулу (2.32), находим среднее значение (постоянную составляющую)

и коэффициент гармоники

В предыдущих разделах мы рассмотрели разложение периодических сигналов в ряд Фурье, а также изучили некоторые свойства представления периодических сигналов рядом Фурье. Мы говорили, что периодические сигналы можно представить как ряд комплексных экспонент, отстоящих друг от друга на частоту рад/c, где — период повторения сигнала. В результате мы можем трактовать представление сигнала в виде ряда комплексных гармоник как комплексный спектр сигнала. Комплексный спектр, в свою очередь, может быть разделен на амплитудный и фазовый спектры периодического сигнала.

В данном разделе мы рассмотрим спектр периодической последовательности прямоугольных импульсов, как одного из важнейших сигналов, используемого в практических приложениях.

Спектр периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , длительности секунд следующих с периодом секунд, как это показано на рисунке 1

Рисунок 1. Периодическая последовательность прямоугольных импульсов

Единица измерения амплитуды сигнала зависит от физического процесса, который описывает сигнал . Это может быть напряжение, или, сила тока, или любая другая физическая величина со своей единицей измерения, которая меняется во времени как . При этом, единицы измерения амплитуд спектра , , будут совпадать с единицами измерения амплитуды исходного сигнала.

Тогда спектр , , данного сигнала может быть представлен как:

Спектр периодической последовательности прямоугольных импульсов представляет собой множество гармоник с огибающей вида .

Свойства спектра периодической последовательности прямоугольных импульсов

Рассмотрим некоторые свойства огибающей спектра периодической последовательности прямоугольных импульсов.

Постоянная составляющая огибающей может быть получена как предел:

Для раскрытия неопределенности воспользуемся правилом Лопиталя :

Где называется скважностью импульсов и задает отношение периода повторения импульсов к длительности одиночного импульса.

Таким образом, значение огибающей на нулевой частоте равно амплитуде импульса деленной на скважность. При увеличении скважности (т.е. при уменьшении длительности импульса при фиксированном периоде повторения) значение огибающей на нулевой частоте уменьшается.

Используя скважность импульсов выражение (1) можно переписать в виде:

Нули огибающей спектра последовательности прямоугольных импульсов можно получить из уравнения:

Знаменатель обращается в ноль только при , однако, как мы выяснили выше , тогда решением уравнения будет

Тогда огибающая обращается в ноль если

На рисунке 2 показана огибающая спектра периодической последовательности прямоугольных импульсов (пунктирная линия) и частотные соотношения огибающей и дискретного спектра .

Рисунок 2. Cпектр периодической последовательности прямоугольных импульсов

Также показаны амплитудная огибающая , амплитудный спектр , а также фазовая огибающая и фазовый спектр .

Из рисунка 2 можно заметить, что фазовый спектр принимает значения когда огибающая имеет отрицательные значения. Заметим, что и соответствуют одной и той же точке комплексной плоскости равной .

Пример спектра периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , следующих с периодом секунды и различной скважностью . На рисунке 3а показаны временные осциллограммы указанных сигналов, их амплитудные спектры (рисунок 3б), а также непрерывные огибающие спектров (пунктирная линия).

Рисунок 3. Cпектр периодической последовательности прямоугольных импульсов при различном значении скважности
а — временные осциллограммы; б — амплитудный спектр

Как можно видеть из рисунка 3, при увеличении скважности сигнала, длительность импульсов уменьшается, огибающая спектра расширяется и уменьшается по амплитуде (пунктирная линия). В результате, в пределах главного лепестка увеличивается количество гармоник спектра .

Спектр смещенной во времени периодической последовательности прямоугольных импульсов

Выше мы подробно изучили спектр периодической последовательности прямоугольных импульсов для случая, когда исходный сигнал являлся симметричным относительно . В результате спектр такого сигнала является вещественным и задается выражением (1). Теперь мы рассмотрим, что произойдет со спектром сигнала если мы сместим сигнал во времени,как это показано на рисунке 4 .

Рисунок 4. Сдвинутая во времени периодическая последовательность прямоугольных импульсов

Смещенный сигнал можно представить как сигнал , задержанный на половину длительности импульса . Спектр смещенного сигнала можно представить согласно свойству циклического временного сдвига как:

Таким образом, спектр периодической последовательности прямоугольных импульсов, смещенной относительно нуля, не является чисто вещественной функцией, а приобретает дополнительный фазовый множитель . Амплитудный и фазовый спектры показаны на рисунке 5.

Рисунок 5. Амплитудный и фазовый спектры сдвинутой во времени периодической последовательности прямоугольных импульсов

Из рисунка 5 следует, что сдвиг периодического сигнала во времени не изменяет амплитудный спектр сигнала, но добавляет линейную составляющую к фазовому спектру сигнала.

Выводы

В данном разделе мы получили аналитическое выражение для спектра периодической последовательности прямоугольных импульсов.

Мы рассмотрели свойства огибающей спектра периодической последовательности прямоугольных импульсов и привели примеры спектров при различном значении скважности.

Также был рассмотрен спектр при смещении во времени последовательности прямоугольных импульсов и показано, что смещение во времени изменяет фазовый спектр и не влияет на амплитудный спектр сигнала.

Москва, Советское радио, 1977, 608 c.

Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов и максимальным значением. Найдем разложение в ряд такого сигнала, выбрав начало координат как показано на рис. 15. при этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих=0, и нужно рассчитать только коэффициенты.

- 0 T t

постоянная составляющая
(28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса
, деленная на весь период, т.е.
, т.е. то же, что получилось и при строгом формальном вычислении (28).

Вспомним, что частота первой гармоники  1 =, где Т – период прямоугольного сигнала. Расстояние между гармониками= 1 . Если номер гармоники n окажется таким, что аргумент синуса
, откуда. Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют«первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

(29)

с другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульсаN = S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных , то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть
при
, гдеk – любое целое число. Так, например, из (22) и (23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S =2 , то и N =2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 / U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

2.5. Спектры при уменьшении длительности импульса и периода сигнала.

Регулировать скважность S = T / t n можно либо изменением длительности импульса t n при T =const, либо изменением периода Т при t n =const. Рассмотрим спектры сигналов при этом.

    T =const, t n =var. Частота первой гармоники f 1 =1/ T = const и f = f 1 = const. Первый нуль N = T / t n и по мере укорочения импульса t n смещается в область гармоник с большими номерами. При t n 0 N , спектр получается дискретным и f = f 1 , бесконечно широкий и с бесконечно малыми амплитудами гармоник.

    t n =const, T =var. Будем увеличивать период Т , тогда частота первой гармоники f 1 и расстояние между спектральными линиями f будут уменьшаться. Так как f = f 1 =1/Т , то спектральные линии будут смещаться в область более низких частот и «плотность» спектра возрастет. Если Т , то сигнал из периодического становится непериодическим (одиночный импульс). В этом случае f 1 = f 0, т.е. спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга.

Отсюда следует правило: периодические сигналы порождают дискретные (линейчатые) спектры, а непериодические – сплошные (непрерывные).

При переходе от дискретного спектра к непрерывному ряд Фурье заменяется интегралом Фурье. Наиболее просто эта замена выполняется, если использовать запись ряда Фурье в комплексной форме (16) и (17). Интеграл Фурье для непрерывного спектра записывается

, (30)

где
(31)

Функция F (j ) называется спектральной функцией или спектральной плотностью , которая зависит от частоты. Формулы (30) и (31) называют в совокупности односторонним преобразованием Фурье , которое является частным случаем более общего преобразования Лапласа и получается заменой в преобразовании Лапласа комплексной переменной р на j .

Спектральную функцию можно представить как огибающую коэффициентов ряда Фурье, т.е. как предел линейчатого спектра периодической функции при Т . Функция F (j ) может быть действительной или комплексной. Считая в общем случае
, мы получаем две частотные характеристики:
-амплитудный спектр , т.е. зависимость амплитуды спектральных составляющих от частоты, и () фазовый спектр , т.е. закон изменения фазы спектральных составляющих сигнала от частоты. Можно показать, что амплитудный спектр – всегда четная, а фазовый спектр – всегда нечетная функция . Спектральную функцию для многих непериодических сигналов (одиночных импульсов различной формы) наиболее легко и просто находить с помощью таблиц оригиналов и изображений в преобразовании Лапласа, которые приводятся в учебной и справочной литературе. После нахождения изображения по Лапласу F (p ) для заданной непериодической функции f (t ) , спектральная функция находится

(32)

Итак, согласно (30) непериодическая функция f (t ) представляется совокупностью бесконечно большого числа гармоник с бесконечно малыми амплитудами
во всем диапазоне частот от - до +, т.е. представление f (t ) в виде интеграла Фурье подразумевает суммирование незатухающих гармонических колебаний бесконечного сплошного спектра частот.

    описание лабораторной установки

Работа выполняется на блоке «Синтезатор сигнала», функциональная схема которого приведена на рис. 16.

Блок содержит генераторов Г1-Г6 шести первых гармоник сигнала. Частота первой гармоники равна 10 кГц. Гармонический сигнал с выхода n-го генератора через фазовращатель Ф n и аттенюатор А n поступает на сумматор. Фазовращателями задают начальные фазы  n гармоник, а аттенюаторами – их амплитуды А n .

На выходе сумматора в общем случае получается сумма шести гармоник сигнала

.

С выхода сумматора сигнал подается на вход Y осциллографа. Для его внешней синхронизации используется специальный импульсный сигнал, подаваемый с гнезда «Синхр.» на вход Х осциллографа. Для установки и контроля амплитуд гармоник предусмотрена возможность отключения любой из гармоник. Включив только генератор n-ой гармоники, можно установить ее амплитуду аттенюатором А n и оценить ее значения с помощью осциллографа. Каждый фазовращатель с помощью переключателя позволяет установить требуемое дискретное значение начальной фазы гармоники, либо отключить генератор.

Спектральное представление временных функций широко используется в теории связи. Для теоретических и экспериментальных исследований характеристик электрических цепей и передачи сообщений по каналам связи используется различные типы сигналов: гармонические колебания, уровни постоянных напряжений, последовательности прямоугольных и радиоимпульсов и т. д. Особо важную роль в теоретических исследованиях электрических цепей играют вычислительные сигналы в форме единичной функции и импульсной функции (функции Дирака). Определим спектры наиболее распространенных типовых сигналов.

11.1 Спектр последовательности прямоугольных импульсов

Пусть имеется периодическая последовательность импульсов прямоугольной формы периодом Т длительностью импульсов t и и амплитудой А. Аналитическое выражение функции , описывающей импульс на отрезке , имеет вид

(11.1)

График периодической последовательности импульсов изображен на рисунке 11.1.

Рисунок 11.1

Данная функция является четной, так как ее график симметричен относительно оси ординат. Тогда коэффициенты Фурье это функции вычисляются по формулам (КФТ2), где .

Число представляет собой среднее значение функции за период и называется постоянной составляющей. Частоту называют основной, или первой гармоникой, а частоты k высшими гармониками, где k=2,3,4,…

Построим амплитудный спектр рассматриваемой последовательности прямоугольных импульсов. Так как функция периодическая, то ее амплитудный спектр является линейчатым. Обозначим через расстояние между любыми соседними гармониками. Очевидно, оно равно . Амплитуда k-ой гармоники согласно (11.2) имеет вид

(11.3)

Найдем отношение между периодом Т и длительностью импульса , при котором амплитуда k-ой гармоники обращается в нуль.

А 2 ≈32В, А 3 ≈15В, А 4 ≈0, А 5 ≈6,36В, А 6 ≈10,5В, А 7 ≈6,36В, А 8 ≈0, А 9 ≈4,95В, А 10 ≈6,37В.

Полученный в результате расчета амплитудный спектр приведен на рисунке 11.2.

Рисунок 11.2

Такой спектр называют линейчатым или дискретным спектром.

Аналогично рассчитаны и построены спектры для q=8 и q=16. Они приведены на рисунках 11.3 и 11.4 соответственно.

Рисунок 11.3

Рисунок 11.4

Из рисунка видно, что чем больше скважность прямоугольных импульсов, тем меньше значение имеет амплитуда первой гармоники, но тем медленнее убывает спектр.

11.2 Спектр одиночного прямоугольного импульса

Рассмотрим Ф (11.1) для случая, когда Т→∞, то есть периодическая последовательность импульсов вырождается в одиночный прямоугольный импульс, длительностью t u .

Аналитическое выражение для этого импульса запишется в виде:

График этой функции изображен на рисунке 11.5.

Рисунок 11.5

В этом случае частота первой гармоники и расстояние между гармониками становится равным 0, следовательно, спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга. Такой спектр называют сплошным. Отсюда следует важнейшее правило: периодические сигналы порождают дискретные спектры, а непериодические – сплошные (непрерывные).

Спектр прямоугольного одиночного импульса можно найти непосредственно из прямого преобразования Фурье (10.1)

Литература: [Л.1], с 40

В качестве примера приведем разложение в ряд Фурье периодической последовательности прямоугольных импульсов с амплитудой , длительностью и периодом следования , симметричной относительно нуля, т.е.

, (2.10)

Здесь

Разложение такого сигнала в ряд Фурье дает

, (2.11)

где – скважность.

Для упрощения записи можно ввести обозначение

, (2.12)

Тогда (2.11) запишется следующим образом

, (2.13)

На рис. 2.3 изображена последовательность прямоугольных импульсов. Спектр последовательности, как впрочем, и любого другого периодического сигнала, носит дискретный (линейчатый) характер.

Огибающая спектра (рис. 2.3, б) пропорциональна . Расстояние по оси частот между двумя соседними составляющими спектра равно , а между двумя нулевыми значениями (ширина лепестка спектра) – . Число гармонических составляющих в пределах одного лепестка, включая правое по рисунку нулевое значение, составляет , где знак означает округление до ближайшего целого числа, меньшего (если скважность – дробное число), или (при целочисленном значении скважности). При увеличении периода основная частота уменьшается, спектральные составляющие на диаграмме сближаются, амплитуды гармоник также уменьшаются. При этом форма огибающей сохраняется.

При решении практических задач спектрального анализа вместо угловых частот используют циклические частоты , измеряемые в Герцах. Очевидно, расстояние между соседними гармониками на диаграмме составит , а ширина одного лепестка спектра – . Эти значения представлены на диаграмме в круглых скобках.

В практической радиотехнике в большинстве случаев вместо спектрального представления (рис. 2.3, б) используют спектральные диаграммы амплитудного и фазового спектров. Амплитудный спектр последовательности прямоугольных импульсов представлен на рис. 2.3, в.

Очевидно, огибающая амплитудного спектра пропорциональна .

Что же касается фазового спектра (рис. 2.3, г), то полагают, что начальные фазы гармонических составляющих изменяются скачком на величину при изменение знака огибающей sinc kπ/q . Начальные фазы гармоник первого лепестка, полагаются равными нулю. Тогда начальные фазы гармоник второго лепестка составят φ = -π , третьего лепестка φ = -2π и т.д.

Рассмотрим еще одно представление сигнала рядом Фурье. Для этого воспользуемся формулой Эйлера

.

В соответствии с этой формулой k-ю составляющую (2.9) разложения сигнала в ряд Фурье можно представить следующим образом

; . (2.15)

Здесь величины и являются комплексными и представляют собой комплексные амплитуды составляющих спектра. Тогда ряд

Фурье (2.8) с учетом (2.14) примет следующую форму

, (2.16)

, (2.17)

Нетрудно убедиться в том, что разложение (2.16) проводится по базисным функциям , которые также являются ортогональными на интервале , т.е.

Выражение (2.16) представляет собой комплексную форму ряда Фурье, которая распространяется на отрицательные частоты. Величины и , где означает комплексную сопряженную с величину, называются комплексными амплитудами спектра. Т.к. является комплексной величиной, из (2.15) следует, что

и .

Тогда совокупность составляет амплитудный, а совокупность – фазовый спектр сигнала .

На рис. 2.4 представлена спектральная диаграмма спектра рассмотренной выше последовательности прямоугольных импульсов, представленного комплексным рядом Фурье

Спектр также носит линейчатый характер, но в отличие от ранее рассмотренных спектров определяется как в области положительных, так и в области отрицательных частот. Поскольку является чётной функцией аргумента , спектральная диаграмма симметрична относительно нуля.

Исходя из (2.15) можно установить соответствие между и коэффициентами и разложения (2.3). Так как

и ,

то в результате получим

. (2.18)

Выражения (2.5) и (2.18) позволяют найти значения при практических расчетах.

Дадим геометрическую интерпретацию комплексной формы ряда Фурье. Выделим k-тую составляющую спектра сигнала. В комплексной форме k-я составляющая описывается формулой

где и определятся выражениями (2.15).

В комплексной плоскости каждое из слагаемых в (2.19) изображается в виде векторов длиной , повернутых на угол и относительно вещественной оси и вращающихся в противоположных направлениях с частотой (рис. 2.5).

Очевидно, сумма этих векторов дает вектор, расположенный на вещественной оси, длина которого составляет . Но этот вектор соответствует гармонической составляющей

Что касается проекций векторов на мнимую ось, то эти проекции имеют равную длину, но противоположные направления и в сумме дают ноль. А это значит, что сигналы, представленные в комплексной форме (2.16) в действительности являются вещественными сигналами. Иными словами, комплексная форма ряда Фурье является математической абстракцией, весьма удобной при решении целого ряда задач спектрального анализа. Поэтому, иногда спектр, определяемый тригонометрическим рядом Фурье, называют физическим спектром , а комплексной формой ряда Фурье – математическим спектром .

И в заключение рассмотрим вопрос распределения энергии и мощности в спектре периодического сигнала. Для этого воспользуемся равенством Парсеваля (1.42). При разложении сигнала в тригонометрический ряд Фурье выражение (1.42) принимает вид

.

Энергия постоянной составляющей

,

а энергия k-той гармоники

.

Тогда энергия сигнала

. (2.20)

Т.к. средняя мощность сигнала

,

то с учетом (2.18)

. (2.21)

При разложение сигнала в комплексный ряд Фурье выражение (1.42) имеет вид

,

где
- энергия k-той гармоники.

Энергия сигнала в этом случае

,

а его средняя мощность

.

Из приведенных выражений следует, что энергия или средняя мощность k-той спектральной составляющей математического спектра вдвое меньше энергии или мощности соответствующей спектральной составляющей физического спектра. Это обусловлено тем, что физического спектра распределяется поровну между и математического спектра.

-τ и /2
τ и /2
Т
t
U 0
S(t)

Задание №1, группа РИ – 210701