Понятие о дифференциальной экспрессии генов. Дифференциальная экспрессия генов, тотипотентность

Краткое описание

Онтогенез – непрерывный процесс количественных и качественных изменений, происходящих в организме в течение всей жизни при постоянном взаимодействии генотипа и условий среды. Термины «онтогенез» и «филогенез» ввел в биологию зоолог Е.Геккель. Термин «онтогенез» означает процесс индивидуального развития особи, «филогенез» - история развития вида. Согласно биогенетическому закону индивидуальное развитие особи является как бы кратким повторением филогенеза.

Вступление
Что такое дифференцировка?
Цитогенетические основы дифференцировки в онтогенезе
Дифференцировка соматической клетки в онтогенезе
Дифференциальная экспрессия генов
Выводы
Список литературы

Вложенные файлы: 1 файл

Визуальное наблюдение в электронный микроскоп, как наиболее прямой подход к изучению уровня транскрипции, т.е. генной активности, проведено в отношении только отдельных генов - рибосомных, генов хромосом типа ламповых щеток и некоторых других. На элекгронограммах отчетливо видно, что одни гены транскрибируются активнее других. Хорошо различимы и неактивные гены.

Особое место занимает изучение политенных хромосом. Политенные хромосомы - это гигантские хромосомы, обнаруживаемые в интерфазных клетках некоторых тканей у мух и других двукрылых. Такие хромосомы есть у них в клетках слюнных желез, мальпигиевых сосудов и средней кишки. Они содержат сотни нитей ДНК, которые редуплицировались, но не подверглись расхождению. При окраске в них выявляются четко выраженные поперечные полосы или диски. Многие отдельные полосы соответствуют местоположению отдельных генов. Ограниченное число определенных полос в некоторых дифференцированных клетках образует вздутия, или пуфы, выступающие за пределы хромосомы. Эти вздутые участки находятся там, где гены наиболее активны в отношении транскрипции. Было показано, что клетки разного типа содержат разные пуфы. Изменения в клетках, происходящие в ходе развития, коррелируют с изменениями в характере пуфов и синтезом определенного белка. Других примеров визуального наблюдения генной активности пока нет.

Все остальные этапы экспрессии генов являются результатом сложных видоизменений продуктов первичной генной активности. Под сложными изменениями подразумевают посттранскрипционные преобразования РНК, трансляцию и посттрансляционные процессы.

Имеются данные по изучению количества и качества РНК в ядре и цитоплазме клеток организмов, находящихся на разных стадиях эмбрионального развития, а также в клетках различных типов у взрослых особей. Обнаружено, что сложность и число различных видов ядерной РНК в 5-10 раз выше, чем мРНК. Ядерные РНК, которые представляют собой первичные продукты транскрипции, всегда длиннее, чем мРНК. Кроме того, ядерная РНК, изученная на морском еже, по количеству и качественному разнообразию идентична на различных стадиях развития особи, а мРНК цитоплазмы отличается.в клетках разных тканей. Это наблюдение приводит к мысли о том, что посттранскрипционные механизмы влияют на дифференциальную экспрессию генов.

Примеры посттранскрипционной регуляции экспрессии генов на уровне процессинга известны. Мембранно-связанная форма иммуноглобулина IgM у мышей отличается от растворимой формы дополнительной аминокислотной последовательностью, позволяющей мембранно-связанной форме «заякориваться» в клеточной мембране. Оба белка кодируются одним локусом, но процессинг первичного транскрипта протекает по-разному. Пептидный гормон кальцитонин у крыс представлен двумя разными белками, детерминированными одним геном. У них одинаковые первые 78 аминокислот (при общей длине 128 аминокислот), а различия обусловлены процессингом, т.е. опять наблюдается дифференциальная экспрессия одного и того же гена в различных тканях. Есть и другие примеры. Вероятно, альтернативный процессинг первичных транскриптов играет очень важную роль в дифференцировке, однако остается неясным его механизм.

Большая часть мРНК цитоплазмы одинакова по качественному составу в клетках, относящихся к различным стадиям онтогенеза. мРНК необходимы для обеспечения жизнедеятельности клеток и детерминируются генами «домашнего хозяйства», представленными в геноме в виде нескольких нуклеотидных последовательностей со средней частотой повторяемости. Продуктами их активности являются белки, необходимые для сборки клеточных мембран, различных субклеточных структур и т.д. Количество этих мРНК составляет примерно 9/10 от всех мРНК цитоплазмы. Остальные мРНК являются необходимыми для определенных стадий развития, а также различных типов клеток.

При изучении разнообразия мРНК в почках, печени и головном мозге мышей, в яйцеводах и печени кур было обнаружено около 12000 различных мРНК. Лишь 10-15% были специфичны для какой-либо одной ткани. Они считываются с уникальных нуклеотидных последовательностей тех структурных генов, действие которых специфично в данном месте и в данный момент и которые называются генами «роскоши». Количество их соответствует примерно 1000-2000 генов, ответственных за дифференцировку клеток.

Не все гены, имеющиеся в клетке, вообще реализуются до этапа образования мРНК цитоплазмы, но и эти образовавшиеся мРНК не все и не во всяких условиях реализуются в полипептиды и тем более в сложные признаки. Известно, что некоторые мРНК блокируются на уровне трансляции, будучи в составе рибонуклеопротеиновых частиц - информосом, вследствие чего происходит задержка трансляции. Это имеет место в овогенезе, в клетках хрусталика глаза.

В ряде случаев окончательная дифференцировка связана с «достройкой» молекул ферментов или гормонов или четвертичной структуры белка. Это уже посттрансляционные события. Например, фермент тирозиназа появляется у зародышей амфибий еще в раннем эмбриогенезе, но переходит в активную форму лишь после их вылупления.

Другим примером является дифференцировка клеток, при которой они приобретают способность реагировать на определенные вещества не сразу после синтеза соответствующего рецептора, а только в определенный момент. Показано, что мышечные волокна в своей мембране имеют рецепторы к медиаторному веществу ацетилхолину. Интересно, однако, что эти холинорецепторы обнаруживали внутри цитоплазмы клеток-миобластов до образования ими мышечных волокон, а чувствительность к ацетилхолину возникала только с момента встраивания рецепторов в плазматическую мембрану во время образования мышечных трубочек и мышечных волокон. Этот пример показывает, что экспрессия генов и тканевая дифференцировка могут регулироваться после трансляции в процессе межклеточных взаимодействий.

Исследуя все выше сказанное мы можем сделать выводы: дифференцировка клеток не сводится только к синтезу специфических белков, поэтому применительно к многоклеточному организму эта проблема неотрывна от пространственно-временных аспектов и, следовательно, от еще более высоких уровней ее регуляции, нежели уровни регуляций биосинтеза белка на клеточном уровне. Дифференцировка всегда затрагивает группу клеток и соответствует задачам обеспечения целостности многоклеточного организма.

Список литературы

  1. “Современная генетика” Айала Ф., Кайгер Дж., М. 1987г.
  2. Корочкин Л.И. “Взаимодействие генов в развитии”, М. 1977 г.
  3. «Генетика» Меркурьева Е.К. и др. М.1991г.
  4. http://5fan.ru/wievjob.php?id= 6571
  5. http://afonin-59-bio.narod.ru/ 2_heredity/2_heredity_self/hs_ 16_onto.htm

Дифференцировка клеток обусловливается изменением дифференциальной экспрессии генов в различных клеточных линиях развивающегося зародыша (Дэвидсон 1976). У бактерий экспрессия генов контролируется только регуляторными механизмами, действующими на уровне транскрипции генов, т.е. синтеза мРНК. У эукариот регуляция проходит на уровнях транскрипции и на уровне транспорта мРНК из ядра в цитоплазму.

В промоторе специфическая последовательность нуклеотидов (АО), которые узнаются РНК-полимеразой.

РНК-полимераза садится на один край – начало (промотор), чтобы дойти до другого края. Двигается только в одном направление.

Начало вычленения на основе определенной последовательности нуклеотидов, а они имеют определенные заряды.

Белки РНК-полимеразы способны двигаться в одном направление.

Начиная с конца промотора РНК-полимераза начинает синтезировать РНК.

По окончание кодирующей области гена РНК прекращает синтезироваться. Об этом сигнализирует терминатор.

Если не будет промотора, то РНК-полимераза не будет считывать ген, т. е. ген будет «молчащим». Сама по себе РНК-полимераза не способна распознавать, какие именно гены нужно транскрибировать в данный момент, есть что-то другое, что помогает ей делать это – белки. Эти белки называются транскрипционными факторами . Регуляторные белки способны связывать разные участки гена, закрывать путь РНК-полимеразе (репрессор – подавитель), белки – усилители.

32. Бесполое размножение, или агамогенез - форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Бесполое размножение, или агамогенез - форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи.

Деление свойственно прежде всего одноклеточным организмам. Как правило, оно осуществляется путём простого деления клетки надвое. У некоторых простейших (например, фораминифер) происходит деление на большее число клеток. Во всех случаях образующиеся клетки полностью идентичны исходной. В однополом размножении участвует один родительский организм, который способен образовать множество идентичных ему организмов.

Споруляция. Спора - это одноклеточная репродуктивная единица обычно микроскопических размеров, состоящая из небольшого количества цитоплазмы и ядра. Образование спор можно наблюдать у бактерий, простейших, у представителей всех групп зеленых растений и всех групп грибов. Споры могут быть различными по своему типу и функции и часто образуются в специальных структурах. Споры во многих случаях образуются путём митоза (митоспоры), причём иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм. Очень часто споры образуются в больших количествах, но они имеют ничтожный вес, и это облегчает их распространение ветром, а также животными, но главным образом - насекомыми. Из-за своих маленьких размеров спора обычно содержит лишь минимальные запасы питательных веществ; из-за того, что многие споры не попадают в подходящее место для прорастания, их потери очень велики. Главное достоинство таких спор заключается в возможности быстрого размножения и расселения видов, в особенности это касается грибов. Споры бактерий служат не для размножения, а для того, чтобы выжить при неблагоприятных условиях, потому что каждая бактерия образует только одну спору.

Вегетативное размножение представляет собой одну из форм бесполого размножения, при котором от растения отделяется относительно большая, обычно дифференцированная, часть и развивается в самостоятельное растение.

Почкование. В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки, а затем этот фрагмент отпочковывается. Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму. Почкование - вид вегетативного размножения. Почкованием размножаются многие низшие грибы, например дрожжи и даже многоклеточные животные, например пресноводная гидра.

Фрагментация. Некоторые организмы могут размножаться делением тела на несколько частей, причём из каждой части вырастает полноценный организм, во всём сходный с родительской особью (плоские и кольчатые черви, иглокожие).


Общее представление о росте и развитии

О росте растений, казалось бы, можно судить по увеличению общей биомассы. Однако этот показатель весьма неоднозначен, поскольку сырая биомасса может не только увеличиваться, но и уменьшаться. Ещё один показатель роста – это увеличение числа клеток. Если число клеток растёт, можно уверенно говорить о росте, но постоянное число клеток ещё не говорит об отсутствии роста: в зоне растяжения увеличение числа клеток незначительно, тем не менее, рост идёт. О росте можно судить по увеличению линейных размеров – высоты растения, длины корня, ширины листа и т.д.

Таким образом, ростом можно называть необратимое увеличение растения хотя бы по одному из параметров: число клеток, линейные размеры, сырая/сухая биомасса.

Упрощённой моделью изменения параметров роста от времени является «кривая роста». Более подробно я буду говорить о ней ниже. Следует только отметить, что характер этой кривой способен резко меняться, в связи с действием на растение массы внешних факторов. Общая кривая роста, часто оказывается составленной разномасштабными S – образными участками. Таким образом, кривая роста целого растения обычно имеет более сложную форму.

Дифференцировка

Термин дифференцировка был введён для обозначения процесса приобретения различий между клетками (тканями, органами, системами органов и т.д.). Предполагается, что есть начальное недифференцированное состояние, когда наблюдатель не может установить различий между клетками, затем появляются видимые различия клеток и они становятся дифференцированными. Традиционно недифференцированными считают: делящиеся клетки эмбриона; меристематические клетки апексов корня и стебля, камбия, феллогена, интеркалярных меристем; клетки, неорганизованно делящиеся в экспериментальных условиях (суспензионная и каллусная культура in vitro).

Клетки, покинувшие зону деления, приступают к дифференцировке. Результат этого процесса можно увидеть, например, при образовании проводящей системы: возникает прокамбий, который дифференцируется на флоэму, ксилему и камбий. Во флоэме дифференцируются ситовидные элементы и клетки-спутницы, в ксилеме - паренхимные клетки и трахеиды, проводящий пучок может быть усилен дифференцирующимися механическими тканями и т.д. В данном примере клетки поэтапно приобретают анатомические различия в связи с выполняемыми функциями, многообразие клеток растет.

Анатомической дифференцировке предшествует биохимическая дифференцировка, когда видимых различий между клетками мало, но они, не одинаковы по содержанию тех или иных веществ. Удобнее следить за дифференциальной эспрессией генов: появлением новых или снижением уровня старых мРНК и белков. Эти данные позволяют зарегистрировать различия между клетками раньше, чем они станут видимыми на анатомическом уровне. Таким образом, дифференцировка начинается с изменения активности генома, экспрессии одних генов и подавления активности других.

При таком подходе делящиеся клетки меристемы придется считать дифференцированными, так как для прохождения клеточного цикла нужна определённая активность генома, которая и будет отличать эти клетки от других. Анатомы давно обратили внимание на неоднородность клеток меристемы. Можно сказать, что апикальная меристема корня дифференцирована на каллиптроген (инициали чехлика), дерматоген (инициали эпидермальной ткани), инициали коры, покоящийся центр и инициали осевого цилиндра. Для каждой из групп делящихся клеток характерны определенная локализация, направление веретена делений и тип производных клеток. Исследование меристемы методами молекулярной генетики показывает, что обнаруженная анатомами дифференцировка меристемы на зоны совпадает с зонами дифференциальной экспрессией определенных генов. Более того, саму меристему в целом можно достаточно четко выделить по зонам дифференциальной экспрессии. Таким образом, меристема является биохимически дифференцированной тканью.

Дифференциальная экспрессия генов - фундаментальное проявляение дифференцировки, и, как это ни парадоксально, недифференцированных клеток вообще не существует. Понятие «недифференцированный» хорошо работает только там, где в соответствии с задачами исследования исходные различия между клетками не учитывают (или нет методов их обнаружить).

Генетический анализ процесса развития предполагает его разложение на ряд промежуточных этапов, каждый из которых контролируется определённой генетической системой. Развитие есть результат совместной, возможно сменяющей друг друга активности двух генетических систем – первичной и вторичной. Под первичной системой понимается генетический контроль, жёстко регламентирующий переход развивающейся системы из одного состояния в другое, а под вторичной генетической регуляцией – способность системы достигать некоторого конечного состояния автоматически или авторегуляторно.

Геноконтролируемые этапы являются критическими периодами в развитии биологической системы, поскольку именно здесь происходят коренные изменения, связанные с формированием морфофункциональной структуры и определение принципов регулирования. В эти периоды создаются предпосылки негеноконтролируемых переходов системы, в которых она сохраняет свои качественные характеристики и свойства, а также демонстрирует низкую чувствительность к внешним и внутренним изменениям условий развития.

Итак, дифференцировкой можно назвать процесс изменения профиля генной активности, приводящий к дальнейшему изменению функции клеток.

Тотипотентность

В эмбриологии животных процесс дифференцировки изображают как сложный «ландшафт», по которому катится «шар». Шар - это символ клетки, дающей начало новому организму. В развилках шар «совершает выбор» и скатывается по одной из нескольких возможных траекторий. Так и клетки, возникшие при делении зиготы, направляются по одному из возможных путей дифференцировки. При этом клетки теряют «морфогенетический потенциал». Все «траектории» заканчиваются в «море», символизирующем смерть организма.

Если в начале пути у «шара» - клетки много потенциальных возможностей, то по мере приближения к «морю» их становится все меньше.

По имени ученого, предложившего такую аналогию, ее называют морфогенетическим ландшафтом Уоддингтона.

Процесс дифференцировки равносилен потере морфогенетического потенциала.

В отличие от клеток животных большинство клеток растений после анатомической дифференцировки легко переходят к делению. Такой процесс называют дедифференцировкой (потерей специализации). При механическом повреждении растения, а также в условиях эксперимента дедифференцировка приводит к образованию каллуса.

Из большинства клеток можно получить новый организм (для клеток животных это невозможно). Практически любая клетка многоклеточного организма содержит полный набор генов, необходимый для формирования организма, однако не каждая клетка может дать начало целому организму. Свойство клетки реализовать имеющуюся генетическую информацию и дать начало целому организму называют тотипотентностью. Тотипотентность клеток растения сравнительно легко реализовать, тогда, как большинство животных клеток не могут образовать новый организм. Таким образом, понятие дифференцировки как снижения морфогенетического потенциала, заимствованное из эмбриологии животных, не применимо к тотипотентным растительным клеткам, так как их морфогенетический потенциал долго остается высоким.

Идея о тотипотентности растительной клетки была выдвинута Г. Хаберландтом еще в 1902 г., хотя и не получила тогда экспериментального подтверждения. Согласно определению Хаберландта, любая клетка растения может дать начало новому организму, и если этого не наблюдается, то только потому, что растительный организм подавляет потенции клетки к развитию. Изоляция клеток от растений способствует проявлению этих потенций.

 Наследственность осуществляется путем передачи ядерной преформации, которая в ходе развития находит свое выражение в процессе цитоплазматического эпигенеза.

Э. Б. ВИЛЬСОН (1925)"

Две клетки дифференцированы по-разному, если, обладая одинаковым геномом, они синтезируют разные белки.

Φ. ЖАКОБ и Ж. МОНО (1963)

Введение

Генетика развития изучает проблему реализации наследственных потенций оплодотворенного яйца в течение жизни организма. Когда мы наблюдаем развитие зародыша, становится очевидным, что в клетках разных типов экспрессируются разные гены. Гемоглобин, например, характерен для эритроцитов, тогда как кристаллин обнаруживается только в клетках хрусталика глаза. Клетки сетчатки способны передавать электрические импульсы на большие расстояния, а прилежащие к ним клетки пигментного эпителия черны от гранул меланина и лишены способности проводить электричество. А между тем клетки каждого из типов образуются в результате митотических делений одного и того же оплодотворенного яйца, и, следовательно, ядра клеток каждого типа должны содержать одинаковую информацию. Развитие, таким образом, осуществляется посредством избирательного включения специфических генов в соответствующем месте и в соответствующее время. Отсюда рождается и проблема, которой занимается генетика развития: какие именно механизмы обусловливают такое избирательное включение, в результате которого возникают различия между клетками?

Центральная гипотеза генетики развития заключается в том, что дифференцировка клеток происходит без генетических изменений. Другими словами, предполагается, что в любом организме все соматические клетки содержат одинаковый набор генов. Следовательно, разные типы дифференцированных клеток должны использовать разные гены из этого общего для всех клеток наследственного материала. Данные, положенные в основу гипотезы дифференциальной экспрессии генов, получены как в генетических, так и эмбриологических исследованиях. В этой главе мы обсудим работы, посвященные вопросу о том, происходят ли в процессе развития необратимые изменения генома.

Тождество геномов

Некоторые крупные неделящиеся клетки личинок двукрылых (таких, как Drosophila и Chironomus ) содержат политенные (многонитчатые) хромосомы. В этих хромосомах репликация ДНК происходит без последующего митоза, и поэтому они содержат 512, 1024 и даже больше двойных спиральных молекул ДНК вместо одной (рис. 9.1 и 9.2). Клетки с политенными хромосомами никогда не делятся. Эти хромосомы можно увидеть с помощью светового микроскопа и различить характерную для них исчерченность. У дрозофилы в гаплоидном наборе хромосом насчитывается примерно 5150 дисков. В некоторых тканях в политенных хромосомах видны широкие полосы, внутри которых после спе-

1 Цит. по кн.: Э. Вильсон. Клетка и ее роль в развитии и наследственности. т. 2. с. 974. Изд-во АН СССР. M.-Л., 1940. 1062 с. Перевод с англ. В. А. Дорфмана и М.С. Навашина.

Гилберт С.

66________________ ГЛАВА 9

циальной обработки можно обнаружить два или более тонких дисков. В ряде генетических работ (Judd, Young, 1973) высказывалось предположение о наличии корреляции между числом этих дисков или хромомер, и числом генов у мухи (Swanson et al., 1981). Число политенных хромосом и характер исчерченности на протяжении всего личиночного периода остаются неизменными (Beermann, 1952; рис. 9.3). При сравнении политенных хромосом в разных тканях личинки не было

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ ________________ 67

выявлено утраты какого-либо из их участков. Когда появилась возможность изучать индивидуальные хромосомы позвоночных, удалось установить, что число хромосом в разных тканях взрослого организма постоянно (Tjio, Puck, 1958). Как мы узнаем позже, в разных исследованиях было показано, что состав и свойства ДНК, экстрагированных из разных соматических тканей, очень сходны.

Другие данные, свидетельствующие об эквивалентности генома, были получены в эмбриологических исследованиях. Дриш и Шпеман (гл. 8) четко показали, что ядра ранних бластомеров морских ежей и тритонов тотипотентны , т.е. способны обеспечить дифференцировку любых типов клеток. В их опытах бластомер. который в норме должен был бы дать начало лишь части зародыша, оказался способным дать в процессе развития целый организм. Следовательно, его ядро должно было содержать гены , необходимые для образования всех других типов клеток Кроме того, Шпеман обнаружил, что проспективное значение клеток, взятых у зародыша тритона на стадии ранней гаструлы, меняется после пересадки их в другую область зародыша. Можно ли экстраполировать результаты этих эмбриологических исследований на клетки, которые уже детерминированы к дифференцировке в определенном направлении? Сохраняют ли детерминированные или дифференцированные клетки другие потенции к развитию? Излагаемые ниже данные, полученные в двух направлениях исследований, приводят к положительному ответу на эти вопросы.

Трансдетерминация
Личинка дрозофилы после вылупления имеет две четко различающиеся популяции клеток. Ее ткани образованы примерно 10 000 клеток. У большей части клеток имеются политенные хромосомы; эти клетки интенсивно растут, увеличиваясь в объеме примерно в 150 раз. Помимо этого, еще около 1000 клеток с диплоидными (неполитенными) ядрами образуют скопления в различных областях личинки. Такие скопления недифференцированных клеток называются имагинальными дисками (от латинского слова «имаго», означающего «взрослый»). Эти клетки делятся в течение всего периода роста личинки. Во время метаморфоза гормон экдистерон вызывает огромные изменения во всем организме (гл. 19). Личиночные клетки дегенерируют, тогда как имагинальные диски получают сигналы к дифференцировке в органы взрослой мухи. На рис. 9.4 показано расположение имагинальных дисков и перечислены структуры, которые из них развиваются.

Клетки имагинальных дисков личинки детерминированы. Так, например, глазной диск можно удалить у одной личинки и имплантировать его в брюшко другой. После метаморфоза муха, развившаяся из этой второй личинки, будет иметь

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

68________________ ГЛАВА 9 ______________________________________________________________________________

лишний глаз на брюшке. Если трансплантировать часть имагинального диска, то разовьется только часть глаза. Таким образом, трансплантация диска или его фрагмента личинке – прекрасный метод для тестирования состояния их детерминации, т.е. того, какая структура или ее фрагмент возникнет из этого диска при метаморфозе. Однако, когда диски трансплантируют взрослым мухам, они не дифференцируются, а их клетки продолжают пролиферировать. Эти пролиферирующие клетки можно непрерывно культивировать, пересаживая их от одной взрослой мухи к другой. Вместе с тем можно вновь тестировать состояние детерминации клеток диска путем удаления у мухи фрагментов растущих дисков и помещения их в личинку, претерпевающую метаморфоз (рис. 9.5).

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

___________________ ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ ______________ 69




Рис. 9.6. Трансдетерминация структур антенны в структуры ноги. А. Трансдетерминация антеннального диска, пересаженного по схеме, показанной на рис. 9.5. Помимо нормальных структур антенны III третий антеннальный сегмент: Ар – аристы) развились структуры ноги, такие, как тарзальные щетинки(ТЩ ) и связанные с ними бракты (б). Б. Голова взрослой мухи, несущей мутацию Antennapedia . У этого мутанта антенны почти полностью превратились в нормальные ноги. Мутации, обусловливающие превращение одной структуры в другую, называются гомеозисными мутациями (гл. 18). Хотя механизм трансдетерминации дисков, вероятно, отличается от механизма гомеозисных мутаций, оба они демонстрируют изменения судьбы дисков. (А – из Gehring, 1969; с любезного разрешения W.T. Gehring; фотография на рис. 9.6. Б . любезно предоставлена J. Haynie.)

Эрнст Халорн с коллегами (Hadorn, 1968) использовали методику пересадки дисков, чтобы показать, что клетка может изменять свое коммитированное состояние. Обычно фрагменты диска, детерминированного к образованию антенн, продолжали образовывать антеннальные структуры каждый раз, когда их тестировали, даже после нескольких серийных трансплантаций таких фрагментов взрослым мухам. Однако результат одного опыта удивил исследователей: вместо монотонного образования антеннальных структур участки антеннального диска формировали части ног, ротового аппарата или крыла. Это явление названо трансдетерминацией. Вместо развития в «собственный» орган имагинальные клетки развивались в другую часть взрослой мухи. Например, из диска, в норме детерминированного к развитию антенны , могла возникнуть структура, свойственная ноге взрослой мухи (рис. 9.6). Кроме того, подобно исходному состоянию детерминации, трансдетерминированное состояние оказалось относительно стабильным и наследовалось клетками диска на протяжении многих поколений.

Трансдетерминация чаще наблюдается после нескольких пассажей через взрослых мух и происходит преимущественно в определенных направлениях (рис. 9.7). Из диска крыла, например, могут возникнуть структуры груди, но грудные диски никогда не дифференцируются в части крыла. Генитальные диски могут дать начало антеннам или ногам, но никогда не наблюдается образования генитальных структур из дисков других типов. Причина такой направленности остается неизвестной, однако ясно, что детерминированные клетки могут дать начало иным типам клеток, чем те, которые образуются из них в норме. Следовательно, в клетках имагиналь-

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

70________________ ГЛАВА 9

ных дисков сохраняются гены для специфических продуктов, которые в норме синтезируются клетками других типов.

Метаплазия
Результаты экспериментов по регенерации глаз у тритонов показали, что даже дифференцированные клетки взрослого организма могут сохранять потенции к образованию клеток других типов. Удаление сетчатки у тритона стимулирует ее регенерацию из пигментного эпителия, а новый хрусталик может сформироваться из клеток дорсальной радужки. Этот последний тип регенерации (названный вольфовской регенерацией по имени ученого, первым обнаружившего это явление) интенсивно изучался Тунео Ямадой и его коллегами (Jamada, 1966; Dumont, Jamada, 1972). Они обнаружили, что после удаления хрусталика происходит ряд событий, в результате которых радужка образует новый хрусталик (рис. 9.8).

1. Меняется форма ядер клеток радужки.

2. В клетках дорсальной части радужки образуется огромное количество рибосом.

3. ДНК этих клеток реплицируется, и вскоре клетки начинают делиться.

4. Происходит дедифференцировка этих клеток. Они выбрасывают меланосомы (продукты дифференцировки. придающие глазу его характерный цвет), которые перевариваются макрофагами, проникающими в рану.

5. Клетки дорсальной части радужки продолжают делиться, формируя дедифференцированную ткань в области удаленного хрусталика.

6. В дедифференцированных клетках радужки начинается синтез специфических для клеток хрусталика продуктов белков кристаллинов.

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ ______________ 71

Эти белки синтезируются в такой же последовательности, как и при развитии нормального хрусталика.

7. Как только сформировался новый хрусталик, деления клеток дорсальной части радужки прекращаются.

Перечисленные события нельзя считать нормальным путем образования хрусталика. Вспомним, что в эмбриогенезе хрусталик образуется из слоя эпителиальных клеток, индуцированных клетками передней стенки глазного пузыря. Процесс формирования хрусталика из дифференцированных клеток радужки называется метаплазией; явление это состоит в превращении (трансформации) одного типа дифференцированных клеток в другой. Следовательно, данные, полученные генетиками и биологами развития, подтверждают гипотезу дифференциальной экспрессии генов в генетически идентичных ядрах.

Клонирование у амфибий: ограничение потенций клеток

Окончательно решить вопрос о том, является ли сужение функций ядра дифференцированной клетки необратимым, было бы можно, проверив способность этого ядра индуцировать образование дифференцированных клеток любого другого типа. В 1938 г. Ганс Шпеман предложил, по его словам, «фантастический» опыт, чтобы ответить на вопрос о том, действительно ли геномы в разных клетках идентичны. Для этого следует имплантировать ядро какой-либо дифференцированной клетки в яйцо, собственное ядро которого предварительно было удалено. Если любое пересаженное ядро идентично ядру зиготы, то оно должно обеспечить полное развитие организма. Однако для проведения такого опыта необходимо было прежде всего разработать три методики: I) методику энуклеации яиц-реципиентов без их разрушения. 2) методику изоляции неповрежденных ядер; 3) методику переноса таких ядер в яйцо без повреждения и ядра, и яйца.

Указанные методики были разработаны Робертом Бриггсом и Томасом Кингом. Эти исследователи комбинировали энуклеацию яйца с его партеногенетической активацией. Если яйцеклетку леопардовой лягушки (Rana pipiens ) уколоть стеклянной иглой, то в ней начнут происходить все цитологические и биохимические изменения, связанные с оплодотворением: разрушаются кортикальные гранулы , перемещается внутренняя цитоплазма, а вблизи анимального полюса завершается мейоз.

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

72________________ ГЛАВА 9 _____________________________________

Положение мейотического веретена в яйце легко определить, поскольку на анимальном полюсе пигментные гранулы удаляются от него и прокол яйца в этом месте приводит к вытеканию мейотического веретена вместе с хромосомами наружу (рис. 9.9). Теперь яйцо является и активированным (так как процессы, необходимые для начала развития, свершены), и одновременно энуклеированным. В энуклеированные яйца переносят ядра из клеток-доноров. Для этого клетку разрывают, с помощью микропипетки захватывают ее ядро и вводят его в яйцо-реципиент. Вместе с ядром в яйцо попадает и некоторое количество окружающей его цитоплазмы клетки-донора, но соотношение цитоплазмы донора и реципиента столь ничтожно (1:10 5), что вряд ли она оказывает какое-либо влияние на исход опыта.

В 1952 г. Бриггс и Кинг (Briggs, King, I952) показали, что ядра, взятые у зародыша на стадии бластулы, будучи перенесенными в цитоплазму яйцеклетки, обеспечивают развитие полностью сформированного головастика. Еще раньше Шпеман продемонстрировал, что клетки бластулы не детерминированы и, следовательно, их ядра тотипотентны. Поэтому если система переноса ядер работает, то ядра бластулы должны быть способны обеспечить полное развитие. Именно это и наблюдается в опытах по пересадке ядер бластулы. Шестьдесят процентов всех имплантированных ядер оказались способными направлять развитие яиц до стадии свободно плавающего головастика; все эти головастики были диплоидными (результат, подтверждающий, что их ядра происходили из ядра клетки-донора). Следовательно, система переноса ядер работает и ее можно использовать для изучения потенций ядра (рис. 9.10).

Что произойдет, если в активированное энуклеированное яйцо пересадить ядро из клетки зародыша, находящегося на более продвинутой стадии развития? Результаты опытов Кинга и Бриггса (King, Briggs, 1956) суммированы на рис. 9.11. Из этого рисунка видно, что большинство ядер из клеток

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ ___________________ 73

бластулы способны обеспечить развитие яиц-реципиентов до стадии нормальных свободно плавающих головастиков, однако в ядрах, взятых от доноров, находящихся на более поздних стадиях развития, эта способность резко ограничивается. Ни одно из ядер соматических клеток , взятых на стадии хвостовой почки, не могло дать информацию, необходимую для развития нормального зародыша. Однако, когда на той же стадии брали ядра половых клеток (в норме дающих после оплодотворения начало целому организму), в 40% случаев были получены бластулы, способные к дальнейшему развитию (Smith, 1956). Следовательно, соматические клетки, становясь детерминированными и дифференцированными, по-видимому, утрачивают способность обеспечивать полное развитие организма. Было показано, что ограничение потенций ядер по мере развития является стабильным и тканеспецифическим признаком. Данные в пользу этого получали в следующих опытах. Число энтодермальных ядер, взятых на стадии поздней гаструлы, увеличивали путем серийных пересадок. С этой целью одно ядро переносили в энуклеированное яйцо; развившийся в результате такой процедуры зародыш имел на стадии бластулы тысячи идентичных ядер. Ядра этой бластулы снова переносили в энуклеированные яйца и таким образом получали много копий первоначального ядра, что позволяло количественно оценить его потенции. Такая методика называется клонированием ядер (рис. 9.12). При трансплантации неклонированных ядер наблюдается большая изменчивость в способности ядер, полученных от разных доноров , обеспечивать развитие. Некоторые ядра обеспечивают весь путь развития до стадии свободно плавающего головастика, тогда как другие - только до стадии аномальной гаструлы. Кинг и Бриггс считали эту изменчивость в разных клонах нормальной. Однако они обнаружили, что в пределах одного клона все ядра обладают одинаковыми потенциями. Каждый клон имел «характерный» фенотип, и часто стадия, на которой останавливалось развитие особей, полученных в результате пересадки ядер потомков одного клонированного ядра энтодермальной клетки, была сходной. Это наблюдалось и при трансплантации ядер, клонированных в течение нескольких поколений. Кроме того, если личинки развивались с какими-либо дефектами, то эти дефекты у всех личинок были одинаковыми. Все личинки с клонированными ядрами имели энтодермальные структуры (а именно, кишку), но у них отсутствовали некоторые производные мезодермы или эктодермы. По-видимому, ядра из клеток энтодермы пригодны для формирования энтодермы, но их способность к формированию эктодермы или мезодермы ограничена. Сходная утрата потенций была обнаружена и в ядрах клеток эктодермы (DiBerardino, King, 1967). Аномальные головастики имели превосходно дифференцированные нейральные структуры, но у них отсутствовали энтодермальные производные. Таким образом, прогрессивное ограничение потенций ядер по мере развития является, по-видимому, общим правилом. Не исключено, что ядра разных дифференцированных клеток отличаются друг от друга.

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

74________________ ГЛАВА 9 ______________________________________________________________________________

Клонирование у амфибий: исключения из ограничения потенций

Можно, однако, и по-иному объяснить ограничение потенций ядер в дифференцированных клетках. Перенося ядро дифференцированной клетки в цитоплазму зрелого яйца, мы тем самым заставляем его вернуться к теперь уже не свойственному ему физиологическому состоянию. У лягушек в период дробления ядра клеток делятся с очень высокой скоростью, тогда как в некоторых дифференцированных клетках они делятся редко или не делятся вообще. Неспособность к репликации ДНК быстро приводит к поломкам хромосом: такие хромосомные аномалии наблюдаются во многих клетках головастиков, развившихся из яиц, содержавших клонированные ядра. Джон Гёрдон и его коллеги, используя несколько измененную методику пересадки ядер, получили результаты, показывающие, что многие из ядер дифференцированных клеток остаются тотипотентными.

Главное различие между опытами Гёрдона и опытами Бриггса и Кинга заключалось в выборе объекта исследований. Гёрдон изолировал ядра из клеток Xenopus laevis , южноафриканской шпорцевой лягушки. Эта лягушка (рис. 9.13) гораздо более

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ 75

Рис. 9.15. Процедура получения половозрелых особей шпорцевой лягушки посредством трансплантации ядер клеток кишечного эпителия головастика в энуклеированные яйца. Хромосомы в яйце шпорцевой лягушки дикого типа (с двумя ядрышками 2- nu ) разрушают УФ-облучением и вводят в него ядро клетки кишечного эпителия головастика шпорцевой лягушки из линии с одним ядрышком (1- nu ). В одних случаях яйцо не делится, в других развитие зародыша нарушается, но в ряде случаев развивается нормальная взрослая особь, клетки которой содержат одно ядрышко. (По Gurdon, 1968, 1977.)


примитивна, чем Rana pipiens; y нее отсутствуют веки, среднее ухо и даже язык, столь характерный для позднее эволюционировавших видов Rana. Шпорцевая лягушка отличается также и по биологии развития. В отличие от леопардовой лягушки взрослая особь Xenopus способна регенерировать утраченные конечности; раннее развитие у нее протекает в три раза быстрее, чем у леопардовой лягушки. В частности, для достижения стадии хвостовой почки зародышу Rana pipiens требуется 80 ч, тогда как Xenopus laevis достигает той же стадии развития всего за 26 ч. Следовательно, ядра энтодермальных клеток на стадии хвостовой почки у шпорцевой лягушки имеют такой же возраст, как ядра из клеток ранней гаструлы у Rana (McKinnell, 1978).

Гёрдон также обнаружил постепенную утрату потенций ядер по мере развития (рис. 9.14). Однако из этого правила выявились интересные исключения. Гёрдон переносил ядра из энтодермальных эпителиальных клеток кишечника, взятые у головастика Xenopus на стадии перехода к активному питанию, в активированные энуклеированные яйца.

Ядра клеток донора имели генетический маркер одно ядрышко на клетку (линия 1-nu ) вместо обычных двух (линия 2- nu ). Из 726 пересаженных ядер только 10 оказались способными обеспечить развитие зиготы до стадии донора. Число ядер, обеспечивающих развитие, удалось повысить до 7% (Gurdon. 1962) с помощью метода серийных пересадок (переноса ядра из клеток кишечника в яйцо и после достижения яйцом-реципиентом стадии бластулы, последующего переноса ядер клеток бластулы в большее число яиц). В некоторых случаях ядра были способны реализовать информацию, достаточную для достижения стадии головастика и образования клеток всех линий нейронов, клеток крови и др. Кроме того, семь головастиков (развившихся после пересадки в яйца ядер, полученных клонированием двух исходных ядер) метаморфизировали и превратились в половозрелых взрослых лягушек (Gurdon, Uehlinger. 1966). Эти ядра были тотипотентными (рис. 9.15).

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

76________________ ГЛАВА 9 _______________________________________________________________________________

Однако Кинг и его коллеги с сомнением отнеслись к опытам Гёрдона, считая, во-первых, что исследователи не приняли достаточных мер предосторожности, исключающих возможность использования вместо ядер кишечника ядер первичных половых клеток, которые, мигрируя, часто задерживаются в кишке , и. во-вторых, что эпителиальные клетки кишечника таких ранних, перешедших на активное питание головастиков могут не обладать свойствами вполне дифференцированных клеток. У них эти клетки еще содержат желточные пластинки (DiBerardino, King, 1967; McKinnell, 1978; Briggs, 1979).

В ответ на эти критические замечания Гёрдон и его коллеги провели следующие опыты. Они культивировали эпителиальные клетки из кожных межпальцевых перепонок ноги взрослой особи Xe nopus. Эти клетки были, безусловно, дифференцированными, потому что каждая из них содержала кератин – белок, характерный для клеток кожи взрослых особей. Когда ядра этих клеток пересаживали в энуклеированные яйца, ни одно из ядер не обеспечивало развития зародышей дальше нейрулы. Однако после клонирования ядер и их пересадки в энуклеированные яйца из таких яиц развивались многочисленные головастики: правда, все они погибали, не переходя на активное питание (Gurdon el al.. 1975). Сходную остановку развития наблюдали другие исследователи (Wabl et al., 1975), пытаясь получить взрослых лягушек при пересадке ядер лимфоцитов. Ди Берардино (DiBerardino, 1987) пришла к заключению, что «на сегодня еще не доказано, что ядра клеток хотя бы одного какого-либо специализированного типа или клеток взрослого организма являются тотипотентными».

Результаты опытов по клонированию ядер у амфибий позволяют сделать два вывода. Во-первых, в них можно увидеть общее правило ограничения потенций в процессе развития. Это ограничение генетически детерминировано и характерно для ядер определенного типа клеток-доноров. Во-вторых, можно легко убедиться в том, что геном дифференцированной клетки обладает изумительной способностью инициировать образование всех типов клеток головастика. Ядро эритроцита лягушки, в котором никогда не происходит репликации ДНК (и синтеза мРНК), может претерпеть при серийных пересадках в общей сложности свыше 100 делений и все же сохранить способность обеспечивать развитие энуклеированного и активированного яйца в свободно плавающего головастика (Orr et al., 1986). Другими словами, даже если еще и ведутся споры о тотипотентности таких ядер, то в том, что они в высокой степени полипотентны, сомневаться не приходится. Ясно одно многие неиспользованные гены клеток кожи или крови могут реактивироваться и обеспечить образование нервов, желудка и сердца свободно плавающего головастика.
Дополнительные сведения и гипотезы: Клонирование

Как мы уже убедились ранее, обсуждая работы Ру и Дриша, детали экспериментальной методики могут сильно повлиять на получаемые результаты. Незначительное изменение процедуры клонирования ядер леопардовой лягушки привело к тому, что ядра, взятые даже на поздней стадии развития, обеспечивали развитие нормальной личинки. Салли Хеннен (Hennen, 1970) показала, что эффективность действия ядер донора можно увеличить, обработав их перед трансплантацией спермином или охладив яйца после пересадки, чтобы дать ядру время для адаптации к цитоплазме яйца. Обрабатывая таким способом ядра энтодермальных клеток, взятых у зародыша леопардовой лягушки на стадии хвостовой почки, и пересаживая затем эти ядра в энуклеированные яйца, Хеннен в 60% случаев получала нормальных личинок (в контрольных опытах процент таких личинок был равен нулю). Однако обработка ядер, взятых из дифференцированных клеток кожи взрослых лягушек, спермином не приводила к развитию взрослых особей из энуклеированных яиц, в которые пересаживали эти ядра.

Клонирование человека из дифференцированных клеток, похоже, стало задачей некоторых журналистов и писателей (писатели задавались целью воспроизводить важных политических деятелей, таких, как Гитлер или Кеннеди, а журналисты возмечтали распространить эту методику на атлетов и кинозвезд). Из предыдущего обсуждения очевидно , что клонирование полностью развитого индивидуума из дифференцированных клеток невероятно трудное дело, да и результаты этих опытов не вполне убедительны. Даже у амфибий ядра дифференцированных клеток, взятые у взрослого животного, не способны после их пересадки в активированные и энуклеированные яйца обеспечить развитие из этих яиц взрослого животного.

Но даже если бы и удалось вырастить взрослых лягушек из яиц, в которые были пересажены ядра дифференцированных клеток, то этот результат

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ ________________ 77




Рис. 9.16. Процедура переноса ядер в активированное энуклеированное яйцо млекопитающего. Одноклеточный зародыш, инкубируемый в среде с колцемидом и цитохалазином, удерживают на месте присасывающей пипеткой. Энуклеирующей пипеткой прокалывают прозрачную оболочку (zona pellucida) и втягивают в пипетку прилежащую к пронуклеусам клеточную (плазматическую) мембрану вместе с частью клетки, содержащей пронуклеусы. Затем энуклеирующую пипетку вытягивают из яйца {А) и тем самым удаляют из него содержащую пронуклеусы цитоплазму. Клеточная мембрана остается неразрушенной; стрелкой указана связь с плазматической мембраной яйца. Б. В пипетке клеточная мембрана образует пузырек с цитоплазмой и пронуклеусами внутри. В. Этот пузырек вместе с вирусом Сендай вводят в перивителлиновое пространство между прозрачной оболочкой и мембраной другой энуклеированной зиготы. Г . Вирус Сендай способствует слиянию энуклеированного яйца с окруженными мембраной пронуклеусами, что позволяет им попасть в клетку (стрелка). Полярное тельце, лежащее возле присасывающей пипетки, в реакцию слияния не вступает. (Из McGrath, Soller, 1983; с любезного разрешения авторов.)

нельзя экстраполировать на человека. Не говоря уже об этических проблемах, при работе с человеческим материалом исследователь сталкивается с многочисленными трудностями. Если у самки амфибий одновременно созревают сотни яиц, то у женщины ежемесячно образуется очень мало зрелых яиц. Кроме того, цитоплазма из яйцеклетки женщины может существенно отличаться от цитоплазмы яйцеклетки лягушки по своей способности воспринимать сигналы, исходящие из ядра клетки, которая находится на более продвинутой стадии развития.

Пересадки ядер были впервые осуществлены у мышей. С этой целью у одной зиготы удаляли оба пронуклеуса и замещали их пронуклеусами. взятыми из другой зиготы (McGrath, Solter, 1983). Процедура этого опыта показана на рис. 9.16. Сначала одноклеточных зародышей инкубируют в среде с цитохалазином и колхицином, чтобы ослабить микрофиламенты и микротрубочки цитоскелета. Затем зародыша удерживают на месте с помощью присасывающей пипетки, а пипеткой для энуклеации прокалывают прозрачную оболочку (zona pellucida) яйца. Цитоплазматическую мембрану клетки энуклеирующей пипеткой не прокалывают, а лишь нажимают ею на область, где находятся пронуклеусы, и втягивают внутрь пипетки этот участок мембраны вместе с прилежащей к нему цитоплазмой и пронуклеусами (А). Затем пипетку оттягивают и тем самым цитоплазму с пронуклеусами отделяют от яйца. Эта цитоплазма окружена плазматической мембраной (Б). Пипетку с пронуклеусами, окруженными мембраной, погружают в каплю, содержащую инактивированный вирус Сендай, который вызывает слияние мембран. После всасывания некоторого количества вируса пипетку приближают к другой зиготе, из которой таким же образом были удалены пронуклеусы. Прокалывают прозрачную оболочку и вводят пронуклеусы вместе с окружающей их мембраной в перивителлиновое пространство между оболочкой яйца и его плазматической мембраной (В). Затем зародыш инкубируют при температуре 37С до момента слияния мембраны яйца-хозяина и донора ядер (Г). Таким образом два пронуклеуса донора попадают в цитоплазму хозяина. Через пять дней культивирования зародыши достигают стадии бластоцисты, и их можно имплантировать в матку приемной псевдобеременной взрослой самки. Родившийся мышонок имеет фенотип мыши, служившей донором ядер.

Свыше 90% энуклеированных зигот мыши, получивших ядра из других зигот, успешно развивались до стадии бластоцисты. Когда же в энуклеированные зиготы пересаживали ядра 4-клеточных

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

78________________ ГЛАВА 9 ___________________________________________________________________________

зародышей, ни одна зигота (из 81) не достигала стадии бластоцисты. Точно так же ядра из клеток 8-клеточного зародыша и из клеток внутренней клеточной массы были не способны поддерживать развитие до предимплантационных стадий (McGrath. Solter. 1984). В отличие от морских ежей и амфибий у мышей ядра ранних бластомеров (которые, как известно, являются тотипотентными) не способны обеспечить полное развитие. Эти опыты не удаются, по-видимому, из-за того, что ядра бластомеров не могут правильно функционировать в цитоплазме зиготы. Таким образом, вряд ли стоит серьезно относиться к идее (высказанной в сентябре 1984 г. в журнале «National Examiner») о клонировании второго Элвиса Пресли из его дифференцированной клетки. Однако свойства ранних бластомеров не у всех млекопитающих одинаковы: разные виды сильно различаются по времени активации и имплантации зародышей в матку. Недавно появилось сообщение (Willadsen, 1986) о том, что, используя модифицированную методику трансплантации ядер , автор получил ягнят из зигот, в которые были пересажены ядра бластомеров 8-клеточного зародыша. У мыши ядра бластомеров не способны направлять развитие зиготы, а у овцы они, по-видимому, могут это делать. Если указанное сообщение подтвердится, его результаты будут иметь огромное значение для сельского хозяйства.

Случаинесомненной способности ядер клеток взрослого организма обеспечивать развитие другого взрослого организма обнаружены только у растений. Эта способность чрезвычайно четко продемонстрирована на клетках моркови и табака. В 1958 г. Стюард и его коллега разработали методику, позволившую получить из дифференцированной ткани корня моркови целое новое растение (рис. 9.17). Из корня моркови изолировали маленькие кусочки флоэмы и вращали в больших колбах, содержащих молоко кокосового ореха (которое на самом деле является его жидким эндоспермом). Оно содержит различные факторы и питательные вещества, необходимые для роста растений, а также гормоны, необходимые для их дифференцировки. В этих условиях клетки флоэмы делятся и формируют неорганизованную ткань, называемую каллусом. Непрерывное вращение вызывает выталкивание отдельных клеток из каллуса в суспензию. Из этих единичных суспендированных клеток образуются корнеподобные узелки, которые продолжают расти все время, пока остаются в суспензии. Если эти узелки перенести на среду, уплотненную агаром, то из них развиваются остальные части растения: в конце концов образуются целые растения моркови, способные к размножению (Steward et al., 1964; Steward, 1970).

Весь процесс развития от единичной клетки до цветущего растения в условиях вращающейся культуры наблюдать невозможно, однако Вазил и Хильдебрандт (Vasil, Hildebrandt, 1965) проследили эти события, изолировав единичные клетки табака и наблюдая за их развитием или непосредственно, или с помощью цейтраферной киносъемки. Как и из клеток моркови, из клеток табака образовывались растеньица, которые могли расти и давать семена.

Клетки табака дают нам еще один пример тотипотентности ядер. Все гены, необходимые для образования целого растения, имеются в ядре дифференцированной клетки. Однако растения и животные развиваются по-разному. Вегетативное размножение отводками (т.е. частями растения, которые. получая питательные вещества, регенерируют недостающие части) представляет собой обычный прием в практике сельского хозяйства. В отличие от животных (у которых половые клетки обособляются

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ ТОЖДЕСТВО ГЕНОМОВ И ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ ___________________ 79
очень рано в развитии в виде отчетливой клеточной линии) у растений в норме гаметы образуются из соматических клеток. Поэтому нет ничего удивительною в том, что единичная клетка может давать начало другому типу клеток и сформировать генетически однородный клон (от греч. klon, что означает «ветвь»).

Итак, мы можем сделать вывод, что дифференциальная утрата генов не является причиной дифференцировки. Ядра дифференцированных клеток содержат большую часть, а возможно, и все гены зиготы: эти гены экспрессируются в соответствующих условиях. Следовательно, процесс дифференцировки включает в себя селективную экспрессию разных частей генома. Нам предстоит более глубокое исследование проблемы постоянства генома и дифференциальной экспрессии генов с привлечением методов молекулярной биологии и клонирования генов. В следующей главе обсуждение этой проблемы будет продолжено на уровне современной молекулярной биологии.

ЛИТЕРАТУРА

Дифференциальная экспрессия генов Две клетки дифференцированы поразному, если, обладая одинаковым геномом, они синтезируют разные белки. Φ. ЖАКОБ и Ж. МОНО (1963)

Лекции Р. П. Костюченко Дифференциальная экспрессия генов 1960 -е 1. Каждое ядро соматической клетки содержит полный геном, возникающий при оплодотворении яйцеклетки. Это означает, что ДНК во всех дифференцированных клетках идентична. 2. Неиспользуемые гены в дифференцированных клетках не подвергаются разрушению или мутациям, они сохраняют способность к экспрессии. 3. Только небольшой процент генома экспрессируется в каждой клетке, часть РНК, синтезируемой в клетке, специфична для данного типа клеток. Экспрессия гена - реализация генетической информации, закодированной в гене

Механизмы дифференциальной экспрессии генов. Эпигенетический ландшафт Уоддингтона. Шарик на вершине изображает клетку, а долины под ним - различные пути развития, по которым она может пойти.

Регуляция экспрессии генов ядро цитоплазма Контроль деградации м. РНК ДНК Первичный транскрипт м. РНК Контроль транскрипции м. РНК Процессинг РНК м. РНК Контроль транспорта м. РНК Контроль деградации белка Деградация белка Контроль трансляции м. РНК Деградация м. РНК Неактив ный белок Контроль ферментативной активности белка Активный белок

Нуклеосома - базовая единица хроматиновой структуры гистоны (две молекулы каждого из гистонов H 2 A-H 2 B и гистонов H 3 -H 4), обернутых двумя витками ДНК. Динамичная структура, сворачивается/разворачивается около 4 раз в секунду. Модификации гистонов: «гистоновый код» ацетилирование гистонов - активирует транскрипцию («разрыхляя» хроматин) деацетилирование гистонов – Инактивирует метилирование гистонов – при метилировании по «хвостам» H 3, Н 4 – уплотнение хроматина, умолкание генов, гетерохроматинизация. хроматин - комплекс ДНК с белком

Считывание гистонового кода. Комплекс считывания кода связывается специфически свяжется только с областью хроматина, содержащей распознаваемые им метки, так что только определенная комбинация меток вызовет связывание комплекса с хроматином и привлечет дополнительные белковые комплексы, которые катализируют одну или несколько биологических функций.

Факторы транскрипции - белки, контролирующие процесс синтеза м. РНК на матрице ДНК путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе с другими белками. Они обеспечивают снижение (репрессоры) или повышение (активаторы) константы связывания РНК-полимеразы с регуляторными последовательностями регулируемого гена. Определяющая черта факторов транскрипции - наличие в их составе одного или более ДНК-связывающих доменов, которые взаимодействуют с характерными участками ДНК, расположенными в регуляторных областях генов.

Конститутивные ТФ - присутствуют всегда во всех клетках - главные факторы транскрипции. Активируемые ТФ (активны в определенных условиях) – Участвующие в развитии организма (клеткоспецифичные) - экспрессия строго контролируется, но, начав экспрессироваться, не требуют дополнительной активации -, Myo. D, Myf 5, Hox. Сигнал-зависимые - требуют внешнего сигнала для активации - внеклеточные сигнал-зависимые - внутриклеточные сигнал-зависимые - мембраносвязанные рецептор-зависимые - фосфорилируются киназами сигнального каскада ДНК-связывающий домен типа «лейциновая молния» в комплексе с ДНК. резидентные ядерные факторы - находятся в ядре независимо от активации - CREB, AP-1, Mef 2 латентные цитоплазматические факторы - в неактивном состоянии локализованы в цитоплазме, после активации транспортируются в ядро - STAT, R-SMAD, NF-k. B, Notch,

Сборка комплекса инициации транскрипции у эукариот на последовательности ТАТА. Структура комплекса TATAсвязывающего белка/транскрипционного фактора TF(II)B из археи Pyrococcus woesei с ДНК

Регуляторные белки эукариот собираются в комплексы на ДНК. Природа и функция такого комплекса зависит от специфической последовательности ДНК, которая служит затравкой для их сборки. Белки, которые не связываются самостоятельно с ДНК, но собираются на других связывающихся с ДНК регуляторных белках, часто называются коактиваторами или корепрессорами (кофакторами) транскрипции. Под этим термином могут пониматься комплексы перестройки хроматина (напр. гистонацетилазы), белки, усиливающие сродство полимеразного комплекса к ДНК, или же просто белки-”строительные леса”, служащие основой для прикрепления обладающих специфической активностью белков.

Объединение множества входящих сигналов на промоторе. Чтобы воздействовать на инициацию транскрипции на промоторе, многочисленные белковые комплексы работают сообща. Конечная транскрипционная активность гена является результатом конкуренции между активаторами и репрессорами.

Энхансеры ДНК-последовательности, которая селективно повышают активность промотора, контролируя частоту осуществляющейся с него инициации транскрипции. Связывают транскрипционные (ко)факторы, которые способны увеличивать уровень транскрипции.

Экпрессия Pax-6 Энхансеры могут контролировать временную и тканеспецифическую экспрессию любого дифференциально регулируемого гена, так что различные типы генов имеют как правило различные энхансеры

Лекции Р. П. Костюченко Сайленсеры Районы ДНК, которые отвечают за репрессию транскрипции какого-либо гена. (Посредством привлечения белков с соответствующей активностью) Нейроспецифический сайленсерный элемент (neural restrictive silencer element) - NRSE; найден в регуляторных районах нескольких мышиных генов, экспрессия которых ограничена нервной системой Нейроспецифический сайленсерный фактор (neural restrictive silencer factor) - NRSF , по- видимому, синтезируется в каждой клетке организма, не являющейся зрелым нейроном по Гилберт, 2010

Лекции Р. П. Костюченко Инсуляторы Чтобы предотвратить распространение влияние энхансера (сайленсера) на соседние гены существуют определенные участки ДНК, которые связывают белки, блокирующие действие регуляторного элемента на соседний промотор. по Гилберт, 2010

Возможные варианты регуляции инициации транскрипции у прокариот (а) Связывание активатора с лигандом стимулирует сборку комплекса и транскрипцию (б) Активатор стимулирует транскрипцию, при связывании с лигандом дезактивируется. (в)Репрессор запрещает транскрипцию. Взаимодействие с лигандом инактивирует репрессор и позволяет транскрипцию. (г) В отсутствие лиганда репрессор не способен взаимодействов ать с ДНК, репрессия происходит только в присутствие лиганда 21

Клеточные сигнальные пути Каскады межмолекулярных взаимодействий, обеспечивающие такую коммуникацию между клеточной мембраной и внутриклеточной точкой приложения, что способна привести к некоторым изменениям в клетке.

Точки приложения сигнальных каскадов Регуляция экспрессии генов (пролиферация, дифференцировка, выполнение функций) Изменение цитоскелета (изменение формы клетки, миграция, установление/разборка клеточных контактов) Влияние на метаболические пути (секреция метаболитов, регуляция активности ферментов) Не обязательно вовлекаются ДНК/РНК.

Способы передачи сигналов от клетки к клетке: Через воздействие паракринных факторов, взаимодействие клеток с внеклеточным матриксом, через межклеточные контакты Диффузия растворимых сигнальных факторов Внеклеточный матрикс, секретируемый одной клеткой, вызывает изменения в другой Контакт между индуцирующей и отвечающей клетками

Источник сигнала Клетка-источник сигнала секретирует определённый тип сигнальной молекулы. Эта молекула детектируется клеткой-мишенью с помощью белка -рецептора, распознающего её и специфически с ней взаимодействующего. Каждая клетка способна отзываться на ограниченный набор сигнальных молекул. Реакция клетки на сигнал зависит от её состояния и типа дифференцировки.

Интеграция сигнала Сигналы из разных источников могут сходиться на The signals from several different sources may be integrated though a single shared protein (A) or protein complex (B) общем белке или белковом комплексе.

Амплификация сигнала 1 рецептор активирует множество G-белков 1 ligand-receptor 500 G-protein 500 enzymes Each enzyme Y produces many second messangers, each messanger activates 1 enzyme Y 105 (2 nd messanger) 250 (ion channels) 105 -107 (ions)

Ле Суперсемейство ростовых факторов TGF-β (TGF-β -суперсемейство) С другой стороны, структура белковучастников зачастую высококонсерватина. Зачастую белки, экспрессируемые в неродственном организме, способны функционально замещать гомологичные им белки хозяина. по Гилберт, 2010

Молекулярные взаимодействия Белок-белковые взаимодействия: ◦ Присоединение/диссоциация (Создание или разрушение белковых комплексов) ◦ Ковалентные модификации: фосфорилирование (tyr, thr, ser) ◦ Конформационные изменения ◦ Перемещение в другую функциональную область клетки ◦ Убиквитинирование и деградация Взаимодействие белков с малыми молекулами ◦ Присоединение/диссоциация, ведущая к изменению конформации, энергетического состояния ◦ Распространение вторичных мессенджеров (Ca 2+, ц. АМФ)

Фосфорилирование белков Привнесение двух отрицательных фосфатных зарядов может вызвать значительное конформационное изменение в белке за счёт, например, притяжения группы положительно заряженных боковых цепей аминокислот. Это может, в свою очередь, повлиять на связывание лигандов и тем самым заметно изменить активность фосфорилированного белка по сравнению с исходным.

Принципиальная схема влияния полученного сигнала на дифференциальную экспрессию генов Внешняя среда ядро цитоплазма Активный белок (1) Коактиваторы транскрипции Р Р Факторы транскрипции Перенос Активный белок (2) Лиганд Белок (2) Белковый комплекс Корепрессоры транскрипции Белок(2) n раз Деградация белка Белокрецептор

Лекции Р. П. Костюченко ПАРАКРИННЫЕ ФАКТОРЫ: сигнальный путь Wnt Семейство Wingless (Wnt-семейство) семейство гликопротеинов, богатых цистеином индуцируют дорсальные клетки сомитов становиться мышечными. участвуют в спецификации клеток среднего мозга Белки Wnt важны для становления полярности конечностей насекомых и позвоночных; они также участвуют в развитии (на различных этапах) мочеполовой системы Б - мочеполовой зачаток новорожденной самки мыши дикого типа. В - Мочеполовой зачаток самки мыши, нокаутированной по гену Wnt 4, с дефектом развития почки. Кроме того, яичник начинает синтезировать тестостерон и окружается системой протоков мужского типа. Фото J. Perasaari, S. Vainio

Лекции Р. П. Костюченко Юкстакринный (контактный) сигналинг: Сигнальный путь Notch. мембраносвязанные лиганды и рецепторы по Гилберт, 2010

Лекции Р. П. Костюченко Юкстакринный сигналинг первоначальные различия между клетками возникают случайно эти различия закрепляются по принципу обратной связи

Лекции Р. П. Костюченко Модель создания пространственной структуры нейробластов из исходно равноценных клеток нейрогенной эктодермы. Нейрогенные клетки производят сигнал в виде белка Delta (темная штриховка), а клетки, не становящиеся нейрогенными, продуцируют рецепторный белок Notch (белые)

Major themes in ST The “internal complexity” of each interaction The combinatorial nature of each component molecule (may receive and send multiple signals) The integration of pathways and networks